Information Technology Reference
In-Depth Information
66. J. Xiang, et al. Ge/Si nanowire heterostructures as high-performance field-effect
transistors. Nature, 441(7092): p 489, 2006.
67. S. Y. Chou, P. R. Krauss, and P. J. Renstrom. Imprint lithography with 25-nanometer
resolution. Science, 272(5258): pp 85-87, 1996.
68. G. Y. Jung, et al. Circuit fabrication at 17 nm half-pitch by nanoimprint lithography.
Nano Letters, 6(3): pp 351-354, 2006.
69. M. Colburn, et al. Step and flash imprint lithography: a new approach to high-
resolution patterning. SPIE: 1999.
70. W. Zhang, N. K. Jha, and L. Shang. A hybrid nanotube/CMOS dynamically
reconfigurable architecture. Nature, 2006.
71. S. C. Goldstein and M. Budiu. Nanofabrics: Spatial computing using molecular
electronics. In: Proceedings of the 28th Annual International Symposium on Com-
puter Architecture, 2003.
72. A. DeHon, et al. Nonphotolithographic nanoscale memory density prospects. IEEE
Transactions on Nanotechnology, 4(2): p 215, 2005.
73. P. J. Kuekes and R. S. Williams. Demultiplexer for a molecular wire crossbar
network. Hewlett-Packard Company, 2001.
74. A. DeHon, P. Lincoln, and J. E. Savag. Stochastic assembly of sublithographic
nanoscale interfaces. IEEE Transactions on Nanotechnology, 2(3): p 165, 2003.
75. J. E. Savage, et al. Radial addressing of nanowires. ACM Journal on Emerging
Technologies in Computing Systems (JETC), 2(2): pp 129-154, 2006.
76. Z. Zhong, et al. Nanowire crossbar arrays as address decoders for integrated
nanosystems. Science, 302(5649): pp 1377-1379, 2003.
77. S. S. Gregory and R. S. Williams. Nano/CMOS architectures using a field-program-
mable nanowire interconnect. Nanotechnology, 18(3): p 035204, 2007.
78. A. DeHon. Nanowire-based programmable architectures. ACM Journal on Emerging
Technologies in Computing Systems (JETC), 1(2): pp 109-162, 2005.
79. J. M. Tour, et al. NanoCell Electronic Memories. Journal of American Chemistry
Society, 125(43): pp 13279-13283, 2003.
80. J. M. Tour, et al. Nanocell logic gates for molecular computing. IEEE Transactions on
Nanotechnology, 1(2): p 100, 2002.
81. C. P. Husband, et al. Logic and memory with nanocell circuits. IEEE Transactions on
Electron Devices, 50(9): p 1865, 2003.
82. D. Nackashi and P. Franzon. Moletronics: a circuit design perspective. In: SPIE
International Conference on Smart Electronics and MEMS, 2000, Melbourne
Australia.
83. E. Goto. The parametron: a digital computing element which utilizes parametric
oscillation. In: IRE, 1959.
84. OS Unsal, et al. Impact of parameter variations on circuits and microarchitecture.
IEEE Micro, 26(6): p 30, 2006.
85. N. S. Kim, et al. Leakage current: Moore's law meets static power. Computer, 36(12):
p 68, 2003.
86. G. Ashkenasy, et al. Molecular engineering of semiconductor surfaces and devices.
Accounts of Chemical Research, 35(2): pp 121-128, 2002.
 
Search WWH ::




Custom Search