Biomedical Engineering Reference
In-Depth Information
19. N.E. Fedorovich, et al ., The osteoinductive potential of printable, cell-laden
hydrogel-ceramic composites. J. Biomed. Mater. Res. A , 100(9): p. 2412-20,
2012.
20. A.S. Sarvestani, X. He, and E. Jabbari, Effect of osteonectin-derived peptide on
the viscoelasticity of hydrogel/apatite nanocomposite scaffolds. Biopolymers ,
85(4): p. 370-8, 2007.
21. M. Bongio, et al ., Biomimetic modifi cation of synthetic hydrogels by incorpora-
tion of adhesive peptides and calcium phosphate nanoparticles: In vitro evalu-
ation of cell behavior. Eur. Cell Mater. , 22: p. 359-76, 2011.
22. S.C. Leeuwenburgh, J.A. Jansen, and A.G. Mikos, Functionalization of
oligo(poly(ethylene glycol)fumarate) hydrogels with fi nely dispersed calcium
phosphate nanocrystals for bone-substituting purposes. J. Biomater. Sci. Polym.
Ed. , 18(12): p. 1547-64, 2007.
23. M.R. Nejadnik, et al ., Facilitating the mineralization of oligo(poly(ethylene
glycol)fumarate) hydrogel by incorporation of hydroxyapatite nanoparticles.
J. Biomed. Mater. Res. A , 100(5): p. 1316-23, 2012.
24. M. Patel, et al ., Characterization of cyclic acetal hydroxyapatite nanocompos-
ites for craniofacial tissue engineering. J. Biomed. Mater. Res. A , 94(2): p. 408-18,
2010.
25. J. Song, et al ., Elastomeric high-mineral content hydrogel-hydroxyapatite com-
posites for orthopedic applications. J. Biomed. Mater. Res. A , 89(4): p. 1098-107,
2009.
26. A.K. Gaharwar, et al ., Highly extensible, tough, and elastomeric nanocompos-
ite hydrogels from poly(ethylene glycol) and hydroxyapatite nanoparticles.
Biomacromolecules , 12(5): p. 1641-50, 2011.
27. J.M. Anderson, et al ., Biphasic peptide amphiphile nanomatrix embedded with
hydroxyapatite nanoparticles for stimulated osteoinductive response. ACS
Nano , 5(12): p. 9463-79, 2011.
28. T. Kokubo and H. Takadama, How useful is SBF in predicting in vivo bone
bioactivity? Biomaterials , 27(15): p. 2907-15, 2006.
29. D. Baskar, R. Balu, and T.S. Kumar, Mineralization of pristine chitosan fi lm
through biomimetic process. Int. J. Biol. Macromol. , 49(3): p. 385-9, 2011.
30. B.M. Chesnutt, et al ., Characterization of biomimetic calcium phosphate on
phosphorylated chitosan fi lms. J. Biomed. Mater. Res. A , 82(2): p. 343-53, 2007.
31. I. Manjubala, et al ., Growth of osteoblast-like cells on biomimetic apatite-
coated chitosan scaffolds. J. Biomed. Mater. Res. B Appl. Biomater. , 84(1): p. 7-16,
2008.
32. T. Ichibouji, et al ., Apatite mineralization abilities and mechanical properties of
covalently cross-linked pectin hydrogels. Materials Science and Engineering C ,
29: p. 1765-1769, 2009.
33. A. Shkilnyy, et al ., Unprecedented, low cytotoxicity of spongelike calcium
phosphate/poly(ethylene imine) hydrogel composites. Macromol. Biosci. , 9(2):
p. 179-86, 2009.
34. K. Madhumathi, et al ., Wet chemical synthesis of chitosan hydrogel-hydroxy-
apatite composite membranes for tissue engineering applications. Int. J. Biol.
Macromol. , 45(1): p. 12-5, 2009.
35. C. Du, et al ., Formation of calcium phosphate/collagen composites through
mineralization of collagen matrix. J. Biomed. Mater. Res. , 50(4): p. 518-27, 2000.
Search WWH ::




Custom Search