Biomedical Engineering Reference
In-Depth Information
References
1. D.S. Benoit, S.D. Collins, and K.S. Anseth, Multifunctional hydrogels that pro-
mote osteogenic hMSC differentiation through stimulation and sequestering
of BMP2. Adv. Funct. Mater. , 17(13): p. 2085-2093, 2007.
2. M.M. Stevens, Biomaterials for bone tissue engineering. Materials Today , 11(5):
p. 18-25, 2008.
3. C.N. Salinas and K.S. Anseth, Mesenchymal stem cells for craniofacial tis-
sue regeneration: designing hydrogel delivery vehicles. J. Dent. Res. , 88(8):
p. 681-92, 2009.
4. N.C. Hunt, and L.M. Grover, Cell encapsulation using biopolymer gels for
regenerative medicine. Biotechnol. Lett. , 2010. 32(6): p. 733-42, 2010.
5. J.J. Schmidt, J. Rowley, and H.J. Kong, Hydrogels used for cell-based drug
delivery. J. Biomed. Mater. Res. A , 87(4): p. 1113-22, 2008.
6. A.S. Rowlands, P.A. George, and J.J. Cooper-White, Directing osteogenic and
myogenic differentiation of MSCs: Interplay of stiffness and adhesive ligand
presentation. Am. J. Physiol. Cell Physiol. , 295(4): p. C1037-44, 2008.
7. A.J. Engler, et al ., Matrix elasticity directs stem cell lineage specifi cation. Cell ,
126(4): p. 677-89, 2006.
8. B. Marelli, et al ., Three-dimensional mineralization of dense nanofi brillar colla-
gen-bioglass hybrid scaffolds. Biomacromolecules , 11(6): p. 1470-9, 2010.
9. B. Marelli, et al ., Accelerated mineralization of dense collagen-nano bioactive
glass hybrid gels increases scaffold stiffness and regulates osteoblastic func-
tion. Biomaterials , 32(34): p. 8915-26, 2011.
10. D.A. Wahl and J.T. Czernuszka, Collagen-hydroxyapatite composites for hard
tissue repair. Eur. Cell Mater. , 11: p. 43-56, 2006.
11. H.W. Kim, H.E. Kim, and V. Salih, Stimulation of osteoblast responses to bio-
mimetic nanocomposites of gelatin-hydroxyapatite for tissue engineering
scaffolds. Biomaterials , 26(25): p. 5221-30, 2005.
12. S.C. Leeuwenburgh, et al ., Mineralization, biodegradation, and drug release
behavior of gelatin/apatite composite microspheres for bone regeneration.
Biomacromolecules , 11(10): p. 2653-9, 2011.
13. A.T. Neffe, et al ., Gelatin functionalization with tyrosine derived moieties
to increase the interaction with hydroxyapatite fi llers. Acta Biomater. , 7(4):
p. 1693-701, 2011.
14. D. Le Nihouannen, et al ., Micro-architecture of calcium phosphate granules
and fi brin glue composites for bone tissue engineering. Biomaterials , 27(13):
p. 2716-22, 2006.
15. N. Shiraishi, et al ., Preparation and characterization of porous alginate scaf-
folds containing various amounts of octacalcium phosphate (OCP) crystals.
J. Mater. Sci. Mater. Med. , 21(3): p. 907-14, 2010.
16. R. Tan, et al ., Preparation and characterization of an injectable composite.
J. Mater. Sci. Mater. Med. , 20(6): p. 1245-53, 2009.
17. G. Turco, et al ., Alginate/Hydroxyapatite biocomposite for bone ingrowth:
A trabecular structure with high and isotropic connectivity. Biomacromolecules ,
10(6): p. 1575-83, 2009.
18. C.K. Kuo and P.X. Ma, Ionically crosslinked alginate hydrogels as scaffolds for
tissue engineering: Part 1. Structure, gelation rate and mechanical properties.
Biomaterials , 22(6): p. 511-21, 2001.
Search WWH ::




Custom Search