Biomedical Engineering Reference
In-Depth Information
36. S.A. Hutchens, et al ., Biomimetic synthesis of calcium-defi cient hydroxyapatite
in a natural hydrogel. Biomaterials , 27(26): p. 4661-70, 2006.
37. K. Furuichi, et al ., Preparation of hierarchically organized calcium phosphate-
organic polymer composites by calcifi cation of hydrogel. Sci. Technol. Adv.
Mater. , 7: p. 219, 2006.
38. C.W. Kim, et al ., Fabrication of hybrid composites based on biomineralization
of phosphorylated poly(ethylene glycol) hydrogels. J. Mater. Res. , 24: p. 50,
2009.
39. J. Li, et al ., Surface characterization and biocompatibility of micro- and
nano-hydroxyapatite/chitosan-gelatin network fi lms. Materials Science and
Engineering C , 29: p. 1207-1215, 2009.
40. J. Li, et al ., Biomimetic multicomponent polysaccharide/nano-hydroxyapatite
composites for bone tissue engineering. Carbohydrate Polymers , 85 p. 885-894,
2011.
41. M. Azami, et al ., Preparation of a biomimetic nanocomposite scaffold for bone
tissue engineering via mineralization of gelatin hydrogel and study of min-
eral transformation in simulated body fl uid. J. Biomed. Mater. Res. A , 100(5):
p. 1347-55, 2012.
42. J. Chen, et al ., Characterization and biocompatibility of nanohybrid scaf-
fold prepared via in situ crystallization of hydroxyapatite in chitosan matrix.
Colloids Surf. B Biointerfaces , 81(2): p. 640-7, 2010.
43. D. Luo, et al ., Low temperature, pH-triggered synthesis of collagen-chitosan-
hydroxyapatite nanocomposites as potential bone grafting substitutes.
Materials Letters , 65: p. 2395-2397, 2011.
44. H. Orimo, The mechanism of mineralization and the role of alkaline phospha-
tase in health and disease. J. Nippon. Med. Sch. , 77(1): p. 4-12, 2010.
45. S.C. Leeuwenburgh, I.D. Ana, and J.A. Jansen, Sodium citrate as an effective
dispersant for the synthesis of inorganic-organic composites with a nanodis-
persed mineral phase. Acta Biomater. , 6(3): p. 836-44, 2010.
46. W. Beertsen and T. van den Bos, Alkaline phosphatase induces the mineraliza-
tion of sheets of collagen implanted subcutaneously in the rat. J. Clin. Invest. ,
89(6): p. 1974-80, 1992.
47. Y. Doi, et al ., Formation of apatite-collagen complexes. Journal of Biomedical
Materials Research , 31: p. 43-49, 1996.
48. T. van den Bos, et al ., Mineralization of alkaline phosphatase-complexed colla-
gen implants in the rat in relation to serum inorganic phosphate. J. Bone Miner.
Res. , 10(4): p. 616-24, 1995.
49. E. Verne, et al ., Alkaline phosphatase grafting on bioactive glasses and glass
ceramics. Acta Biomater. , 6(1): p. 229-40, 2010.
50. T. Osathanon, C.M. Giachelli, and M.J. Somerman, Immobilization of alkaline
phosphatase on microporous nanofi brous fi brin scaffolds for bone tissue engi-
neering. Biomaterials , 30(27): p. 4513-21, 2009.
51. L.T. de Jonge, et al ., In vitro responses to electrosprayed alkaline phosphatase/
calcium phosphate composite coatings. Acta Biomater. , 5(7): p. 2773-82, 2009.
52. C. Schouten, et al ., The effect of alkaline phosphatase coated onto titanium
alloys on bone responses in rats. Biomaterials , 30(32): p. 6407-17, 2009.
53. T.E. Douglas, et al ., Enzymatically induced mineralization of platelet-rich
fi brin. J. Biomed. Mater. Res. A , 100(5): p. 1335-46, 2012.
Search WWH ::




Custom Search