Geoscience Reference
In-Depth Information
Z
x
G 0 x ð x
g 0 ð x Þ
;
y Þ
x Þþ
x Þ y Þ dy ¼
G ð x
;
k
G ð x
;
x Þ
a
Therefore, the argument used to
find an approximate solution of ( 2.75 ) is valid
for Eq. ( 2.74 ) as well.
In traditional way the Eq. ( 2.75 ) is solved by replacing the integral of the
equation by a
finite sum of some quadratic formula. Applying this approach let us
divide the interval [a,b] by a sequence of points x 0 ¼ a
x 1 \
x 2 \ \
x m ¼ b
\
into elementary intervals
ʔ
j =[x j ,x j+1 ], and instead of ( 2.75 ) let us write the
equation:
Z
x i þ 1
X
j 1
x j Þk
K ð x j ;
y Þuð y Þ dy ¼ f ð x j Þ;
ð j ¼ 0
;
1
; ...;
m Þ
ð 2
:
76 Þ
i¼0
x i
Further, because of the assumptions made on
ˆ
(x) and K(x,y) we can write
2
ð x i Þþ ð x x i Þ
0
00 ðn i Þ;
x Þ ¼ x i Þþð x x i Þu
u
2
!
ð x i n i x x i þ 1 Þ
ð 2
:
77 Þ
and assuming the existence and differentiability of K y ð x
;
y Þ we have
2
x i Þþ ð y x i Þ
x i Þþð y x i Þ K y ð x j ;
K 0 yy ð x j ; g i Þ;
K ð x j ;
y Þ ¼K ð x j ;
2
ð x i g i y x i þ 1 Þ
ð 2
:
78 Þ
substituting ( 2.77 ) and ( 2.78 )in( 2.76 ) we get:
X
j 1
i¼0 f K ð x j ;
h i
2 ½K ð x j ;
0
ð x i Þþ K y ð x j ;
x j Þk
x i Þuð x i Þþ
x i Þu
x i Þuð x i Þ
h i
3 K y ð x j ;
0
þ
x i Þu
ð x i Þg h i þ R j ¼ f ð x j Þ
where
X
j 1
i¼0 f
h i
2 u
1
3 K y ð x j ;
h i
00 ðn i Þ ½
4 K y ð x j ;
R j ¼ k
x i Þþ
x i Þ
h i
h i
20 u
1
3 x i Þþ
h i
4 u
2 K 0 yy ð x j ; g i Þ ½
0 ð x i Þ þ
00 ðn i Þ K 0 yy ð x j ; g i Þg
þ
Search WWH ::




Custom Search