Hardware Reference
In-Depth Information
13. Khan IA, Zaidi MH (2003) A novel ideal floating inductor using translinear conveyors. Active
Passiv Electron Comp 26:87-89
14. Incekaraoglu M, Cam U (2005) Realization of series and parallel R-L and C-d Impedances
using single differential voltage current conveyor. Analog Integr Circ Sig Process 43:101-104
15. Gift SJG (2004) New simulated inductor using operational conveyors. Int J Electron
91:477-483
16. Zeki A, Toker A (2005) DXCCII-based tunable gyrator. Int J Electron Commun (AEU)
59:59-62
17. Yuce E (2006) Comment on Realization of series and parallel R-L and C-D impedances using
single differential voltage current conveyor. Analog Integr Circ Sig Process 49:91-92
18. Yuce E (2006) On the realization of the floating simulators using only grounded passive
components. Analog Integr Circ Sig Process 49:161-166
19. Yuce E, Minaei S, Cicekoglu O (2005) A novel grounded inductor realization using a
minimum number of active and passive components. ETRI J 27:427-432
20. Yuce E, Cicekoglu O, Minaei S (2006) CCII-based grounded to floating immittance converter
and a floating inductance simulator. Analog Integr Circ Sig Process 46:287-291
21. Minaei S, Yuce E, Cicekoglu O (2006) A versatile active circuit for realizing floating
inductance, capacitance, FDNR and admittance converter. Analog Integr Circ Sig Process
47:199-202
22. Yuce E, Minaei S, Cicekoglu O (2006) Limitations of the simulated inductors based on a single
current conveyors. IEEE Trans Circ Syst-I 53:2860-2867
23. Yuce E, Minaei S (2007) A new active network suitable for realizing ladder filters and
transformer simulator. J Circ Syst Comput 16:29-41
24. Minaei S, Yuce E (2008) Realization of tunable active floating inductance simulators. Int J
Electron 95:27-37
25. Yuce E (2008) Negative impedance converter with reduced nonideal gain and parasitic
impedance effects. IEEE Trans Circ Syst-I 55:276-283
26. Riewruja V, Petchmaneelumka W (2008) Floating current-controlled resistance converters
using OTAs. Int J Electron Commun 62:725-731
27. Metin B, Herencsar N, Horng JW (2014) DCCII-based novel lossless grounded inductance
simulators with no element matching constrains. Radioeng J 23:532-4538
28. Horng JW, Hou CL, Chang CM, Yang H, Shyu WT (2009) Higher-order immittance functions
using current conveyors. Analog Integr Circ Sig Process 61:205-209
29. Sagbas M, Ayten UE, Sedef H, Koksal M (2009) Floating immittance function simulator and
its applications. Circ Syst Sig Process 28:55-63
30. Yuce E, Minaei S (2009) On the realization of simulated inductors with reduced parasitic
impedance effects. Circ Syst Sig Process 28:451-465
31. Yuce E, Minaei S (2009) Novel floating simulated inductors with wider operating-frequency
ranges. Microelectron J 40:928-938
32. Sagbas M, Ayten UE, Sedef H, Koksal M (2009) Electronically tunable floating inductance
simulator. Int J Electron Commun (AEU) 63:423-427
33. Lahiri A (2009) Comment on ' Electronically tunable floating inductance simulator ' . Int J
Electron Commun (AEU) 63:878
34. Kacar F, Yesil A (2010) Novel grounded parallel inductances simulators realization using a
minimum number of active and passive components. Microelectron J 41:632-638
35. Soliman AM (2010) On the realization of floating inductors. Nat Sci 8(5):167-180
36. Metin B, Minaei S (2010) Parasitic compensation in CC-I based circuits for reduced power
consumption. Analog Integ Circ Sig Process 65:157-162
37. Saad RA, Soliman AM (2010) On the systematic synthesis of CCII-based floating simulators.
Int J Circ Theor Appl 38:935-967
38. Kacar F, Metin B, Kuntman H (2010) A new CMOS dual-X second generation current
conveyor (DXCCII) with an FDNR circuit application. Int J Electron Commun (AEU)
64:774-778
Search WWH ::




Custom Search