Hardware Reference
In-Depth Information
39. Horng JW (2010) Lossless inductance simulation and voltage-mode universal biquadratic filter
with one input and five outputs using DVCCs. Analog Integ Circ Sig Process 62:407-413
40. Yuce E (2010) A novel floating simulation topology composed of only grounded passive
components. Int J Electron 97:249-262
41. Kacar F (2010) New lossless inductance simulators realization using a minimum active and
passive components. Microelectron J 41:109-113
42. Kacar F, Yesil A (2011) FDCCII-based FDNR simulator topologies. Int J Electron 99:285-293
43. Pal K (1989) Modified current conveyors and their applications. Microelectron J 20:37-40
44. Swamy MNS (2011) Mutators, generalized Impedance converters and inverters, and their
realization using generalized current conveyors. Circ Syst Sig Process 30:209-232
45. Myderrizi I, Minaei S, Yuce E (2011) DXCCII-based grounded inductances simulators and
filter applications. Microelectron J 42:1074-1081
46. Prommee P, Somdunyakanok M (2011) CMOS-based current-controlled DDCC and its appli-
cations to capacitance multiplier and universal filter. Int J Electron Commun (AEU) 65:1-8
47. IbrahimMA, Minaei S, Yuce E, Herencsar N, Koton J (2012) Lossy/lossless floating/grounded
inductance simulation using one DDCC. Radioengineering 21:3-10
48. Sagbas M, Ayten UE, Sedef H, Koksal M (2012) Reply to comment on ' Electronically tunable
floating inductance simulator ' . Int J Electron Commun (AEU) 66:86-88
49. Herencsar N, Lahiri A, Koton J, Vrba K, Metin B (2012) Realization of resistorless lossless
positive
and
negative
grounded
inductor
simulators
using
single ZC-CCCITA.
Radioengineering 21:264-272
50. Metin B (2012) Canonical inductor simulators with grounded capacitors using DCCII. Int J
Electron 99:1027-1035
51. Sagbas M (2014) Electronically tunable mutually coupled circuit using only two active
components. Int J Electron 101:364-374
52. Prasad D, Ahmad J (2014) New electronically-controllable lossless synthetic floating induc-
tance circuit using single VDCC. Circ Syst 5:13-15
53. Kacar F, Yesil A, Minaei S, Kuntman H (2014) Positive/negative lossy/lossless grounded
inductance simulators employing single VDCC and only two passive elements. Int J Electron
Commun (AEU) 68:73-78
54. Wang Z (1990) Novel voltage-controlled grounded resistor. Electron Lett 26:1711-1712
55. Piovaccari A (1995) CMOS integrated third generation current conveyor. Electron Lett
31:1228-1229
56. Zeki A, Toker A, Cicekoglu O (2002) The dual-X current conveyor (DXCCII): a new active
device for tunable continuous-time filters. Int J Electron 89:913-923
57. Kacar F, Metin B, Kuntman H (2010) A new dual-X CMOS second generation current
conveyor (DXCCII) with a FDNR circuit application. AEU Int J Electron Commun
64:774-778
58. Elvan HO, Soliman AM (1997) Novel CMOS differential voltage current conveyor and its
applications. IEE Proc Circ Devices Syst 144:195-200
59. Kacar F, Metin B, Kuntman H, Cicekoglu O (2009) A new high-performance CMOS fully
differential second-generation current conveyor with application example of biquad filter
realization. Int J Electron 97:499-510
60. Prommee P, Angkeaw K, Somdunyakanok M, Dejhan K (2009) CMOS-based near zero-offset
multiple input max-min circuits and its applications. Analog Integ Circ Sig Process 61:93-105
61. Chiu W, Liu SI, Tsao HW, Chen JJ (1996) CMOS differential difference current conveyor and
their applications. IEE Proc Circ Devices Syst 143:91-96
62. Adams KM, Deprettere E (1974) On the realization of gyrators by nullors and resistors. Int J
Circ Theor Appl 2:287-290
Search WWH ::




Custom Search