Hardware Reference
In-Depth Information
I 1
3
y
z 2
1
Dual-X
CCII+
5
x 1
I 2
z 1
2
x 2
A
V G1 M 1
4
y
z 2
z 1
y
M 3
9
M 2
6
Dual-X
CCII+
x 1
Dual-X
CCII+
x 1
z 2
B
x 2
C
x 2
z 1
8
V G2
7
C
Fig. 14.16 Resistorless simulation of FI using DXCCIIs proposed by Saad and Soliman (Adapted
from [ 37 ]
2010 John Wiley & Sons Ltd.)
©
2
V G 2
1
sC
μ n C ox W
L
V 3 ¼
ð
V th
Þ
ð
V 1
V 2
Þ
ð
14
:
30
Þ
Hence, the Y-matrix of the circuit is given by:
μ n C ox W
2
4
sC
1
1
½ ¼
Y
ð
V G 1
V th
Þ
ð
V G 2
V th
Þ
ð
14
:
31
Þ
L
11
for equal aspect ratios of the MOSFETs.
Thus, the value of the simulated FI is found to be:
C
L eq ¼
ð
14
:
32
Þ
μ n C ox L
2 V G 1
4
ð
V th
Þ
ð
V G 2
V th
Þ
Hence, the simulated inductance can be controlled by both V G 1 and V G 2 .
14.15 Tunable MOSFET-C FDNR Using a Single DXCCII
Kacar et al. [ 38 ] presented a tunable MOSFET-C FDNR configuration employing a
single DXCCII, two capacitors and a MOSFET as a resistor as shown in Fig. 14.17 .
Assuming ideal DXCCII, the input impedance of the circuit is found to be:
1
s 2 D ¼
2
s 2 C 2 R where R
1
μ n C ox L V c
Z in ¼
¼
ð
14
:
33
Þ
2
ð
V th
Þ
Thus, the value of the simulated FDNR (D) is given by:
Search WWH ::




Custom Search