Hardware Reference
In-Depth Information
y 2
V 02
DVCC
y 1
x
V 03
+
y 1
z+
z+
V in
DVCC
C
y 2
-
x
V 01
R
Fig. 12.7 DVCCs-based first-order filters proposed by Horng [ 8 ]
two grounded passive elements and without any component matching condition.
Assuming ideal DVCCs, the three VM filter transfer functions obtained as:
V 01
V in ¼
2 sCR
sCR
V 02
V in ¼
2
sCR
V 03
V in
HPF
1 LPF
1 and BPF
:
:
:
þ
þ
¼
sCR
þ
1
;
ð
12
:
29
Þ
sCR
þ
1
Khateb- Khatib-Koton biquad A SIMO-type VM multifunction filter configura-
tion based upon the idea of Akerberg-Mossberg [ 203 ] structure has been presented
by Khateb et al. [ 11 ] which employs three DVCCs and six grounded passive
elements.
A circuit analysis of Fig. 12.8 reveals the following transfer functions:
C 2 R 1 R 2
Ds
R 1
Ds
R 4
C 1 C 2 R 1 R 2 R 3
R 4
s 2 R 4
s
V LP
V IN ¼
V BP
V IN ¼
V HP
V IN ¼
ð
12
:
30
Þ
;
ðÞ ;
Ds
ðÞ
ðÞ
s 2
1
C 1 C 2 R 3 R 2
þ
V BR
V IN ¼
ð
12
:
31
Þ
Ds
ðÞ
where
R 4
C 2 R 1 R 2 þ
1
C 1 C 2 R 3 R 2
s 2
Ds
ðÞ¼
þ
ð
12
:
32
Þ
The filter parameters namely Q 0 and
ˉ 0 can be obtained as:
r
C 2 R 2
C 1 R 3
r
1
C 1 C 2 R 2 R 3
R 1
R 4
Q 0 ¼
and
ω 0 ¼
ð
12
:
33
Þ
Thus, for R 2 ¼
ˉ 0 , and
ˉ 0 can also be tuned independently by simultaneously varying R 2 and R 3 (R 2 ¼
R 3 ,Q 0 can be controlled by R 1 and/or R 4 without disturbing
R 3 ).
To confirm the workability of the proposed structure, simulation results using
0.18
Search WWH ::




Custom Search