Geology Reference
In-Depth Information
[66] Howard, K. T., g. K. Benedix, P. A. Bland, and g. Cressey
(2011), Modal mineralogy of CM chondrites by X-ray
diffraction (PSD-XRD): Part 2. Degree, nature and settings
of aqueous alteration, Geochim. Cosmochim. Acta , 75 ,
2735-2751.
[67] de Leuw, S., A. E. Rubin, A. K. Schmitt, and J. T. Wasson
(2009), Mn-53-Cr-53 systematics of carbonates in CM
chondrites: implications for the timing and duration of
aqueous alteration, Geochim. Cosmochim. Acta , 73 ,
7433-7442.
[68] Moriarty, g. M., D. Rumble, iii, and J. M. Friedrich
(2009), Compositions of four unusual CM or CM-related
Antarctic chondrites, Chemie der Erde , 69 , 161-168.
[69] Rubin, A. E., J. M. Trigo-Rodriguez, H. Huber, and J. T.
Wasson (2007), Progressive aqueous alteration of CM
carbonaceous chondrites, Geochim. Cosmochim. Acta , 71 ,
2361-2382.
[70] Trigo-Rodriguez, J. M., A. E. Rubin, and J. T. Wasson
(2006), Non-nebular origin of dark mantles around chon-
drules and inclusions in CM chondrites, Geochim.
Cosmochim. Acta , 70 , 1271-1290.
[71] yokoyama, T., C. M. o'D. Alexander, R. J. Walker (2011),
Assessment of nebular versus parent body processes on
presolar components present in chondrites: Evidence
from osmium isotopes, Earth Planet. Sci. Lett. , 305 ,
115-123.
[79] grossman, J. N., and A. J. Brearley (2005), The onset of
metamorphism in ordinary and carbonaceous chondrites,
Meteorit. Planet. Sci. , 40 , 87-122.
[80] Huss, g. R., and R. S. Lewis (1995), Presolar diamond,
SiC, and graphite in primitive chondrites: abundances as a
function of meteorite class and petrologic type, Geochim.
Cosmochim. Acta , 59 , 115-160.
[81] Huss, g. R., A. P. Meshik, J. S. Smith, and C. M. Hohenburg
(2003), Presolar diamond, silicon carbide, and graphite
in  carbonaceous chondrites: implications for thermal
processing in the solar nebula, Geochim. Cosmochim. Acta ,
6 , 4823-4848.
[82] Huss, g. (2004), implications of isotopic anomalies and
presolar grains for the formation of the early solar system,
Antarct. Meteor. Res. , 17 , 132-152.
[83] ikeda, y. (1984), Alteration of chondrules and matrices in
the four Antarctic carbonaceous chondrites ALH-77307
(C3), y-790123 (C2), y-75293 (C2), and y-74662 (C2),
Mem. Natl. Inst. Polar Res. , 30 , 93-108.
[84] Jones, R. H. (1992), on the relationship between isolated
and chondrule olivine grains in the carbonaceous chon-
drite ALH A77307, Geochim. Cosmochim. Acta , 56 ,
467-482.
[85] Jones, R. H. (1993), Effect of metamorphism on isolated
olivine grains in Co3 chondrites, Geochim. Cosmochim.
Acta , 57 , 2853-2867.
[86] Jones, R. H., J. M. Saxton, i. C. Lyon, and g. Turner
(2000), oxygen isotopes in chondrule olivine and isolated
olivine grains from the Co3 chondrite, Allan Hills A77307,
Meteorit. Planet. Sci. , 35 , 849-857.
[87] Kallemeyn, g. W., and J. T. Wasson (1982), The compo-
sitional classification of chondrites: iii. Ungrouped car-
bonaceous chondrites, Geochim. Cosmochim. Acta , 46 ,
2217-2228.
[88] Keck, B. D., and Sears, D. W. g. (1987), Chemical and
physical studies of type 3 chondrites: Viii. Thermo-
luminescence and metamorphism in the Co chondrites,
Geochim. Cosmochim. Acta , 51 , 3013-3021.
[89] Moore, C., J. Cronin, S. Pizzarello, M.-S. Ma, and
R.  Schmitt (1981), New analyses of Antarctic carbona-
ceous chondrites, Proc. 6 th Symp. Ant. Met. 29-32.
[90] Murae, T., A. Masuda, and T. Takahashi (1984), Pyrolytic
studies of organic components in Antarctic carbonaceous
chondrites y-74662 and ALH-77307, Mem. Natl. Inst.
Polar Res. , 35 , 250-259.
[91] Nagahara, H., and i. Kushiro (1982), Petrology of chon-
drules, inclusions and isolated olivine grains in ALH-77307
(Co3), chondrite, Mem. Natl. Inst. Polar Res. , 25 , 66-77.
[92] Nguyen, A. N., F. J. Stadermann, E. Zinner, R. M. Stroud,
C. M. o'D. Alexander, and L. R. Nittler (2007),
Characterization of presolar silicate and oxide grains in
primitive carbonaceous chondrites, Astrophys. J. , 65 ,
1223-1240.
[93] Rubin, A. E. (1989), Size-frequency distributions of chon-
drules in Co3 chondrites, Meteoritics , 24 , 179-189.
[94] Sears, D. W. g., and M. Ross (1983), Classification of the
Allan Hills A77307 meteorite, Meteoritics , 18 , 1-7.
15. ALH A77307—Co3 CHoNDRiTE
[72] Busemann, H. , C. M. o'D. Alexander , and L. R. Nittler
( 2007), Characterization of insoluble organic matter in
meteorites by Raman spectroscopy, Meteorit. Planet. Sci. ,
42 , 1387-1416.
[73] Biswas, S., T. Walsh, H. Ngo, and M. Lipschutz (1981),
Trace element contents of selected Antarctic meteorites: ii.
Comparison with non-Antarctic specimens, Proc. 6th
Symp. Ant. Met. (T. Nagata, editor), 221-228.
[74] Bonal, L., M. Bourot-Denise, E. Quirico, g. Montagnac,
and E. Lewin (2008), organic matter and metamorphic
history of Co chondrites, Geochim. Cosmochim. Acta , 71 ,
1605-1623.
[75] Brearley, A. J. (1993), Matrix and fine-grained rims in the
unequilibrated Co3 chondrite, ALH A77307: origins and
evidence for diverse, primitive nebular dust components,
Geochim. Cosmochim. Acta , 57 , 1521-1550.
[76] Brearley, A. J., S. Bajt, and S. R. Sutton (1993), Distribution
of moderately volatile trace elements in fine-grained chon-
drule rims in the unequilibrated Co3 chondrite, ALH
A77307, Geochim. Cosmochim. Acta , 59 , 4307-4316.
[77] Chizmadia, L. J., A. E. Rubin, and J. T. Wasson (2002),
Mineralogy and petrology of amoeboid olivine inclusions
in Co3 chondrites: Relationship to parent-body aqueous
alteration, Meteorit. Planet. Sci. , 37 , 1781-1796.
[78] gibson, E. K., and M. Andrawes (1980), The Antarctic
environment and its effect upon the total carbon and sulfur
abundances in recovered meteorites, Lunar Planet. Sci.
Conf. , 11 , Proceedings 2, 1223-1234.
Search WWH ::




Custom Search