Geology Reference
In-Depth Information
16. LEW 85332—UNgRoUPED CHoNDRiTE
[107] Krot, A. N., A. J. Brearley, M. i. Petaev, g. W. Kallemeyn,
D. W. g. Sears, P. H. Benoit, i. D. Hutcheon, M. E.
Zolensky, and K. Keil (2000), Evidence for low-temperature
growth of fayalite and hedenbergite in MacAlpine Hills
88107, an ungrouped carbonaceous chondrite related to
the CM-Co clan, Meteorit. Planet. Sci. , 35 , 1365-1386.
[108] Russell, S. S., A. M. Davis, g. J. MacPherson, y. guan,
and g. R. Huss (2000), Refractory inclusions from the
ungrouped carbonaceous chondrites MAC 87300 and
MAC 88107, Meteorit. Planet. Sci. , 35 , 1051-1066.
[95] Brearley, A. J. (1997), Phyllosilicates in the matrix of
the  unique carbonaceous chondrite Lewis Cliff 85332
and possible implications for the aqueous alteration of Ci
chondrites, Meteorit. Planet. Sci. , 32 , 377-388.
[96] Rubin, A. E., and g. W. Kallemeyn (1990), Lewis Cliff
85332: A unique carbonaceous chondrite, Meteoritics ,
25 , 215-225.
[97] Tonui, E., M. E. Zolensky, and M. E. Lipschutz (2002),
Petrography, mineralogy, and trace element chemistry of
yamato-86029, yamato-793321, and Lewis Cliff 85332:
Aqueous alteration and heating events, Ant. Met. Res. ,
15 , 38-58.
[98] Wasson, J. T., g. W. Kallemeyn, and A. E. Rubin (2000),
Chondrules in the LEW 85332 ungrouped carbonaceous
chondrite: Fractionation processes in the solar nebula,
Geochim. Cosmochim. Acta , 64 , 1279-1290.
19. ALH 84028—CV3 CHoNDRiTE (oXiDiZED)
[109] Busemann, H., C. o'D. Alexander, and L. R. Nittler
(2007), Characterization of insoluble organic matter in
primitive meteorites by microRaman spectroscopy,
Meteorit. Planet. Sci. , 42 , 1387-1416.
[110] Fehr, M. A., M. Rehkämper, A. N. Halliday, U. Wiechert,
B. Hattendorf, D. günther, S. ono, J. L. Eigenbrode, and
D. Rumble (2005), Tellurium isotopic composition of the
early solar system: A search for effects resulting from stellar
nucleosynthesis, 126 Sn decay, and mass-independent frac-
tionation, Geochim. Cosmochim. Acta , 69 , 5099-5112.
[111] guimon, R. K., S. J. K. Symes, D. W. g. Sears, and P. H.
Benoit (1995), Chemical and physical studies of type 3
chondrites: Xii. The metamorphic history of CV chon-
drites and their components, Meteoritics , 30 , 704-715.
[112] Krot, A. N., M. i. Petaev, E. R. D. Scott, B. g. Choi, M.
E. Zolensky, and K. Keil (1998), Progressive alteration in
CV3 chondrites: More evidence for asteroidal alteration,
Meteorit. Planet. Sci. , 33 , 1065-1085.
[113] Krot, A. N., M. i. Petaev, M. E. Zolensky, K. Keil, E. R.
D. Scott, and K. Nakamura (1998), Secondary Ca-Fe-
rich minerals in the Bali-like and Allende-like oxidized
CV3 chondrites and Allende dark inclusions, Meteorit.
Planet. Sci. , 33 , 623-645.
[114] Krot, A. N., M. i. Petaev, and P. A. Bland (2004), Multiple
formation mechanisms of ferrous olivine in CV carbona-
ceous chondrites during fluid-assisted metamorphism,
Antarctic Meteorite Research , 17 , 153-175.
[115] Paque, J. M., g. E. Lofgren, and L. Le (2000),
Crystallization of calcium-aluminum-rich inclusions:
Experimental studies on the effects of repeated heating
events, Meteorit. Planet. Sci. , 35 , 363-371.
[116] Weisberg, M. K., and M. Prinz (1998), Fayalitic olivine in
CV3 chondrite matrix and dark inclusions: A nebular
origin, Meteorit. Planet. Sci. , 33 , 1087-1099.
17. MAC 87300,301—UNgRoUPED CHoNDRiTE
[99] Russell, S. S., A. M. Davis, g. J. MacPherson, y. guan,
and g. R. Huss (2000), Refractory inclusions from the
ungrouped carbonaceous chondrites MAC 87300 and
MAC 88107, Meteorit. Planet. Sci. , 35 , 1051-1066.
[100] Wang, M.-S. and M. E. Lipschutz (1998), Thermally
metamorphosed carbonaceous chondrites from data for
thermally mobile trace elements, Meteorit. Planet. Sci.
33 , 1297-1302.
[101] Zolensky, M. E. (1991), Mineralogy and matrix compo-
sition of “CR” chondrites Renazzo and EET 87770,
and ungrouped chondrites Essebi and MAC 87300,
Meteoritics , 26 , 414.
[102] Zolensky, M., R. Barrett, and L. Browning (1993),
Mineralogy and composition of matrix and chondrule
rims in carbonaceous chondrites, Geochim. Cosmochim.
Acta , 57 , 3123-3148.
18. MAC 88107—UNgRoUPED CHoNDRiTE
[103] Clayton, T. N., and T. K. Mayeda (1999), oxygen isotope
studies of carbonaceous chondrites, Geochim. Cosmochim.
Acta , 63 , 2089-2104.
[104] Elsila, J. E., N. P. de Leon, P. R. Buseck, and R. N. Zare
(2005), Alkylation of polycyclic aromatic hydrocarbons
in carbonaceous chondrites, Geochim. Cosmochim. Acta ,
69 , 1349-1357.
[105] Friedrich, J. M., M. S. Wang, and M. E Lipschutz (2002),
Comparison of the trace element composition of Tagish
Lake with other primitive carbonaceous chondrites,
Meteorit. Planet. Sci. , 37 , 677-688.
[106] Krot, A. N., i. D. Hutcheon, A. J. Brearley, o. V.
Pravdivtseva, M. i. Petaev, and C. M. Hohenberg (2006),
Timescales and settings for alteration of chondritic mete-
orites, in Meteorites and the Early Solar System II , edited
by D. S. Lauretta and H. y. McSween Jr., pp. 525-553,
University of Arizona Press, Tucson.
20. EET 90007—CK5 CHoNDRiTE
[117] Elsila, J. E., N. P. de Leon, P. R. Buseck, and R. N. Zare
(2005), Alkylation of polycyclic aromatic hydrocarbons
in carbonaceous chondrites, Geochim. Cosmochim. Acta ,
69 , 1349-1357.
[118] geiger, T., and A. Bischoff (1995), Formation of opaque
minerals in CK chondrites, Planet. Space Sci. , 43 ,
485-498.
Search WWH ::




Custom Search