Geology Reference
In-Depth Information
12. ALH A81002—CM2 CHoNDRiTE
[54] Fehr, M. A., M. Rehkämper, A. N. Halliday, U. Wiechert,
B. Hattendorf, D. günther, S. ono, J. L. Eigenbrode, and
D. Rumble iii (2005), Tellurium isotopic composition of
the early solar system: A search for effects resulting from
stellar nucleosynthesis, 126 Sn decay, and mass-independent
fractionation, Geochim. Cosmochim. Acta , 69 , 5099-5112.
[55] Friedrich, J. M. , M. S. Wang, and M. E. Lipschutz ( 2002),
Comparison of the trace element composition of Tagish
Lake with other primitive carbonaceous chondrites,
Meteorit. Planet. Sci. , 37 , 677-686.
[56] glavin, D. P., J. P. Dworkin, A. Aubrey, o. Botta, J. H.
Doty, Z. Martins, J. L. Bada (2006), Amino acid analyses
of Antarctic CM2 meteorites using liquid chromato-
graphy-time of flight-mass spectrometry, Meteoritics , 41 ,
889-902.
[57] Hiroi, T., M. E. Zolensky, C. M. Pieters, and M. E.
Lipschutz (1996), Thermal metamorphism of the C, g, B,
and F asteroids seen from the 0.7 micron, 3 micron and UV
absorption strengths in comparison with carbonaceous
chondrites, Meteorit. Planet. Sci. , 31 , 321-327.
[58] Howard, K. T., g. K. Benedix, P. A. Bland, g. Cressey
(2011), Modal mineralogy of CM chondrites by X-ray
diffraction (PSD-XRD): Part 2. Degree, nature and set-
tings of aqueous alteration, Geochim. Cosmochim. Acta ,
75 , 2735-2751.
[59] Martins, Z., C. M. o'D. Alexander, g. E. orzechowska,
M. L. Fogel, and P. Ehrenfreund (2007), indigenous amino
acids in primitive CR meteorites, Meteorit. Planet. Sci. , 42 ,
2125-2136.
[60] Nazarov, M. A., g. Kurat, F. Brandstaetter, T. Ntaflos, M.
Chaussidon, and P. Hoppe (2009), Phosphorus-bearing
sulfides and their associations in CM chondrites, Petrology ,
17 , 101-123.
[61] Russell, S. S., J. W. Arden, and C. T. Pillinger (1996), The
carbon and nitrogen isotopic composition of chondritic
diamond, Meteorit. Planet. Sci. , 31 , 343-355.
[62] yokoyama, T., C. M. o'D. Alexander, and R. J. Walker
(2011), Assessment of nebular versus parent body processes
on presolar components present in chondrites: Evidence
from osmium isotopes, Earth Planet . Sci. Lett. , 305 ,
115-123.
[63] Zolensky, M. E., D. W. Mittlefehldt, M. E. Lipschutz, M.
S. Wang, R. N. Clayton, T. K. Mayeda, M. M. grady, C.
Pillinger, and D. Barber (1997), CM chondrites exhibit the
complete petrologic range from type 2 to 1, Geochim.
Cosmochim. Acta , 61 , 5099-5115.
[42] Brearley, A. J. (2006), The action of water, in Meteorites
and the Early Solar System II , edited by D. S. Lauretta and
H. y. McSween Jr., pp. 587-624, University of Arizona
Press, Tucson.
[43] Chizmadia, L. J., and A. J. Brearley (2008), Mineralogy,
aqueous alteration, and primitive textural characteristics
of fine-grained rims in the y-791198 CM2 carbonaceous
chondrite: TEM observations and comparison to ALH
A81002, Geochim. Cosmochim. Acta , 72 , 602-625.
[44] Hanowski, N. P. and A. J. Brearley (2000), iron-rich aure-
oles in the CM carbonaceous chondrites, Murray,
Murchison and Allan Hills 81002: Evidence for in situ
aqueous alteration, Meteorit. Planet. Sci. , 35 , 1291-1308.
[45] Hanowski, N. P., and A. J. Brearley (2001), Aqueous alter-
ation of chondrules in the CM carbonaceous chondrite,
Allan Hills 81002: implications for parent body alteration,
Geochim. Cosmochim. Acta , 65 , 495-518.
[46] Hiroi, T., M. E. Zolensky, C. M. Pieters, and M. E.
Lipschutz (1996), Thermal metamorphism of the C, g, B,
and F asteroids seen from the 0.7 micron, 3 micron and UV
absorption strengths in comparison with carbonaceous
chondrites, Meteorit. Planet. Sci. , 31 , 321-327.
[47] Howard, K. T., g. K. Benedix, P. A. Bland, and g. Cressey
(2009), Modal mineralogy of CM2 chondrites by X-ray
diffraction (PSD-XRD): Part 1. Total phyllosilicate abun-
dance and the degree of aqueous alteration, Geochim.
Cosmochim. Acta , 73 , 4576-4589.
[48] Hua, X., J. Wang, and P. R. Buseck (2002), Fine-grained
rims in the ALH 81002 and LEW 90500 CM2 meteorites:
Their origin and modification, Meteorit. Planet. Sci. , 37 ,
229-244.
[49] Lauretta, D. S., X. Hua, and P. R. Buseck (2000),
Mineralogy of fine-grained rims in the ALH A81002 CM
chondrite, Geochim. Cosmochim. Acta , 64 , 3263-3273.
[50] Zolensky, M. E., D. W. Mittlefehldt, M. E. Lipschutz, M.
S. Wang, R. N. Clayton, T. K. Mayeda, M. M. grady, C.
Pillinger, and B. David (1997), CM chondrites exhibit the
complete petrologic range from type 2 to 1, Geochim.
Cosmochim. Acta , 61 , 5099-5115.
13. ALH 83100—CM1/2 CHoNDRiTE
[51] Busemann H. , C. M. o'D. Alexander , and L. R. Nittler
( 2007), Characterization of insoluble organic matter in
meteorites by Raman spectroscopy, Meteorit. Planet. Sci. ,
42 , 1387-1416.
[52] de Leuw, S., A. E. Rubin, and J. T. Wasson (2010),
Carbonates in CM chondrites: Complex formational
histories and comparison to carbonates in Ci chondrites,
Meteorit. Planet. Sci. , 45 (4), 513-530.
[53] de Leuw, S., A. E. Rubin, A. K. Schmitt, and J. T. Wasson
(2009), Mn-53-Cr-53 systematics of carbonates in CM
chondrites: implications for the timing and duration of
aqueous alteration, Geochim. Cosmochim. Acta , 73 ,
7433-7442.
14. MET 01070—CM1 CHoNDRiTE
[64] Botta, o., Z. Martins, and P. Ehrenfreund (2007), Amino
acids in Antarctic CM1 meteorites and their relationship
to other carbonaceous chondrites, Meteorit. Planet. Sci.
42 , 81-92.
[65] Busemann H., C. M. o'D. Alexander, and L. R. Nittler
(2007), Characterization of insoluble organic matter in
meteorites by Raman spectroscopy, Meteorit. Planet. Sci.,
42 , 1387-1416.
Search WWH ::




Custom Search