Geography Reference
In-Depth Information
+2 x 4 a 2 b 2 ( X 2 + Y 2 + Z 2 )+ b 2 ( X 2 + Y 2 )+ a 2 Z 2
− a 2 b 2 =0 ,
x 4 +2 x 4 a 2 + b 2
+ x 4 4 a 2 b 2 + a 4 + b 4
a 2 ( X 2 + Y 2 )
b 2 Z 2
(J.54)
a 2 b 2
a 4 b 4
2 x 4 ( X 2 + Y 2 + Z 2 )
a 4 b 4
b 2 ( X 2 + Y 2 )+ a 2 Z 2
a 2 b 2
=0 .
a 6 b 6
x 1 ( x 4 ) ,x 2 ( x 4 ) ,x 3 ( x 4 )
:
x 1 =(1+ b 2 x 4 ) 1 X, x 2 =(1+ b 2 x 4 ) 1 Y, x 3 =(1+ a 2 x 4 ) 1 Z.
Backward step. Substitute
{
}
(J.55)
Test :
Λ 1 = Λ 2 =1+ b 2 x 4 > 0 3 =1+ a 2 x 4 > 0if Λ 1 = Λ 2 > 0and Λ 3 > 0then
end .
Here, we used MATHEMATICA 2.2 for DOS 387. The executable command is “GroebnerBasis
[Polynomials, Variables]” in a specified ordering. The fourteen elements of the computed Grobner
basis can be interpreted as following. The first equation is a univariate polynomial of order four in
the Lagrange multiplier identical to ( J.53 ). As soon as we substitute the admissible value x 4 into
the linear equations ( J.61 ), ( J.65 ), and ( J.69 ), we obtain the unknowns
{
x 1 ,x 2 ,x 3 }
=
{
x, y, z
}
.
Box J.7 (Closed form solution).
2 ,
2
{
X, Y, Z
}∈ T
{
x 1 ,x 2 ,x 3 }∈ E
a,a,b to
{
L, B, H
}
.
Pythagoras in three dimensions:
H := ( X − x 1 ) 2 +( Y − x 2 ) 2 +( Z − x 3 ) 2 .
(J.56)
Convert {x 1 ,x 2 ,x 3 } and {X, Y,Z} to {L, B} :
tan L = Y
x 2
x 1 = Y
y
Z
x 3
( X
x , tan B =
X
X
x 1 ) 2 +( Y
x 2 ) 2
Z − x 3
( X − x ) 2 +( Y − y ) 2 .
=
(J.57)
Box J.8 (Buchberger algorithm, Grobner basis for solving the normal equations of the con-
straint minimum distance mapping).
Ideal I :=
:= [ x 1 + b 2 x 1 x 4 − X, x 2 + b 2 x 2 x 4 − Y, x 3 + a 2 x 3 x 4 − Z, b 2 x 1 + b 2 x 2
a 2 b 2 ]
Groebner basis G :=
a 2 x 3
x 1 + b 2 x 1 x 4
X, x 2 + b 2 x 2 x 4
Y, x 3 + a 2 x 3 x 4
Z, b 2 x 1 + b 2 x 2
:= [
{
 
Search WWH ::




Custom Search