Geography Reference
In-Depth Information
point P ∈ T to p ∈ E
A 1 ,A 2 . Finally, by means of Box J.5 , we convert the Cartesian coordinates
{X, Y, Z}∈ T
to Gauss ellipsoidal coordinates {L, B, H} .
Without the various forward and backward reduction steps, we could automatically generate an
equivalent algorithm for solving the normal equations in a closed form by means of Grobner basis
and the Buchberger algorithm ( Cox et al. 1996 ; Becker and Weispfennig 1998 ; Sturmfels 1996 ;
Zippel 1993 ). Let us write the Ideal of the polynomials in lexicographic order x 1 >x 2 >x 3 >x 4
(read: x 1 before x 2 before x 3 before x 4 )intoBox J.6 .TheGrobner basis of the Ideal characteristic
for the minimum distance mapping problem can be computed either by MATHEMATICA software
or by MAPLE software.
2 and {x 1 ,x 2 ,x 3 }∈ E
A 1 ,A 2
Box J.6 (Algorithm for solving the normal equations of the constraint minimum distance
mapping).
First forward step. Solve (i) , (ii) , and (iii) for
{
x 1 ,x 2 ,x 3 }
:
(i)
X
1+ b 2 x 4 ,
x 1 (1 + b 2 x 4 )= X ⇒ x 1 =
(ii)
(J.50)
Y
1+ b 2 x 4 ,
x 2 (1 + b 2 x 4 )= Y
x 2 =
(iii)
Z
1+ a 2 x 4 .
x 3 (1 + a 2 x 4 )= Z
x 3 =
x 1 ,x 2 ,x 3 ,x 4 }
Second forward step. Substitute
{
:
1
1
x 1 + x 2 =
(1 + b 2 x 4 ) 2 ( X 2 + Y 2 ) , 3 =
(1 + a 2 x 4 ) 2 Z 2 ,
(J.51)
⇔ b 2 X 2 + Y 2
(1 + b 2 x 4 ) 2
b 2 ( x 1 + x 2 )+ a 2 x 2
− a 2 b 2
3
Z 2
(1 + a 2 x 4 ) 2
+ a 2
a 2 b 2 =0 .
The characteristic quadratic equation.
Multiply the rational equation of constraint by (1 + a 2 x 4 ) 2 (1 + b 2 x 4 ) 2 :
b 2 (1 + a 2 x 4 ) 2 ( X 2 + Y 2 )+ a 2 (1 + b 2 x 4 ) 2 Z 2
a 2 b 2 (1 + a 2 x 4 ) 2 (1 + b 2 x 4 ) 2 =0
(J.52)
(1 + 2 a 2 x 4 + a 4 x 4 ) b 2 ( X 2 + Y 2 )+(1+2 b 2 x 4 + b 4 x 4 ) a 2 Z 2
a 2 b 2 (1 + 2 a 2 x 4 + a 4 x 4 )(1 + 2 b 2 x 4 + b 4 x 4 )=0 ,
−x 4 a 6 b 6
2 x 4 a 4 b 4 ( a 2 + b 2 )+ x 4 a 2 b 2 [ a 2 ( X 2 + Y 2 )+ b 2 Z 2
4 a 2 b 2
− a 4
b 4 ]+
(J.53)
 
Search WWH ::




Custom Search