Geography Reference
In-Depth Information
fulfill the harmonicity condition Eq.( 22.58 ). Here we have ordered the Laplace-Beltrami condition
of harmonicity into even POLY ξ ( EVEN : q,l )and odd POLY ξ ( ODD : q,l ).
Table 22.4 Taylor polynomials ansatz: solving the vector-valued Laplace-Beltrami equation on an ellipsoid of
revolution
“ansatz”
homogeneous polynomial of degree r
L
Q 0
x = ξ ( q,l ) ,y = η ( q,l )
L 0 =: l, q := Q
Δ ξ ( q,l )
η ( q,l )
=0
2
∂q 2
ξ ( q,l )
η ( q,l )
= 0
+ 2
∂l 2
(22.53)
ξ ( q,l )= POLY ξ ( q,l,r )= r
ξ hk q h l k = r
k ξ r−k,k q r−k l k
(22.54)
h,k =0
h + k = r
η ( q,l )= POLY η ( q,l,r )= r
η hk q h l k = r
k =0
η r−k,k q r−k l k
(22.55)
h,k =0
h + k = r
POLY ξ ( q,l,r )= ξ r, 0 q r + ξ r− 1 , 1 q r− 1 l + ξ r− 2 , 2 q r− 2 l 2 + ξ r− 3 , 3 q r− 3 l 3 + ξ r− 4 , 4 q r− 4 l 4 +
ξ r− 5 , 5 q r− 5 l 5 + ... + ξ 5 ,r− 5 q 5 l r− 5 + ξ 4 ,r− 4 q 4 l r− 4 + ξ 3 ,r− 3 q 3 l r− 3 + ξ 2 ,r− 2 q 2 l r− 2 +
ξ 1 ,r− 1 q 1 l r− 1 + ξ 0 ,r l r
(22.56)
POLY η ( q,l,r )= η r, 0 q r + η r− 1 , 1 q r− 1 l + η r− 2 , 2 q r− 2 l 2 + η r− 3 , 3 q r− 3 l 3 + η r− 4 , 4 q r− 4 l 4 +
η r− 5 , 5 q r− 5 l 5 + ... + η 5 ,r− 5 q 5 l r− 5 + η 4 ,r− 4 q 4 l r− 4 + η 3 ,r− 3 q 3 l r− 3 + η 2 ,r− 2 q 2 l r− 2 +
η 1 ,r− 1 q 1 l r− 1 + η 0 ,r l r
(22.57)
“decomposition in even and odd bivariate harmonic polynomials”
Δξ ( q,l )=0 ,Δη ( q,l )=0
Δ POLY ξ ( q,l,r )=0 POLY η ( q,l,r )=0
1) q r− 2 + ξ r− 1 , 1 ( r −
2) q r− 3 l + ξ r− 2 , 2 ( r −
Δ POLY ξ ( q,l,r )= ξ r, 0 ( r −
1) ( r −
2) ( r −
3)
q r− 4 l 2 + ξ r− 3 , 3 ( r
3)( r
4) q r− 5 l 3 + ξ r− 4 , 4 ( r
4)
5) q r− 6 l 4 + ... + ξ r− 2 , 2 q r− 2 + ξ r− 3 , 3 3
2 q r− 3 l + ξ r− 4 , 4 4
3 q r− 4 l 2 +
( r
4 q r− 5 l 3 + ... + ξ 4 ,r− 4 4
3 q 2 l r− 4 + ξ 5 ,r− 5 5
4 q 3 l r− 5 + ξ 2 ,r− 2 2 l r− 2 +
ξ r− 5 , 5 5
2 ql r− 3 + ξ 2 ,r− 2 ( r
3) q 2 l r− 4 + ξ 3 ,r− 3 ( r
4) q 3 l r− 5 +
ξ 3 ,r− 3 3
2)( r
3)( r
2) ql r− 3
= Δ POLY ξ ( EVEN : q,l )+ Δ POLY ξ ( ODD : q,l ) = 0
1) l r− 2 + ξ 1 ,r− 1 ( r
ξ 0 ,r r ( r
1)( r
(22.58)
Δ POLY η ( q,l,r )analogously
Table 22.5 is a collection of even bivariate harmonic polynomials highlighted by a corollary
for special recurrence relations of Eqs.( 22.59 )-( 22.62 ). Here we give an illustration by Fig. 22.2
and the examples of basis elements
q r− 4 l 2 ,q r− 6 l 4 ,...,q 2 l r− 4 ,l r− 2
. Similarly Table 22.6 collects
the odd bivariate harmonic polynomials leading to a corollary for special recurrence relations of
Eqs.( 22.63 )-( 22.66 ). The examples contain the basis elements
{
}
q r− 3 l,q r− 5 l 3 ,...,q 3 l r− 5 ,ql r− 3
{
}
.
 
Search WWH ::




Custom Search