Environmental Engineering Reference
In-Depth Information
54. Huang, Y.B. and Fu, Y. (2013) Hydrolysis of cellulose to glucose by solid acid catalysts.
Green Chemistry , 15 (5), 1095-1111.
55. Geboers, J.A., Van de Vyver, S., Ooms, R. et al. (2011) Chemocatalytic conversion of
cellulose: opportunities, advances and pitfalls. Catalysis Science and Technology , 1 (5),
714-726.
56. Mohanram, S., Amat, D., Choudhary, J. et al. (2013) Novel perspectives for evolving
enzyme cocktails for lignocellulose hydrolysis in biorefineries. Sustainable Chemical
Processes , 1 , 15.
57. Dadi, A.P., Varanasi, S. and Schall, C.A. (2006) Enhancement of cellulose saccharification
kinetics using an ionic liquid pretreatment step. Biotechnology and Bioengineering , 95 (5),
904-910.
58. Moller, M., Harnisch, F. and Schroder, U. (2013) Hydrothermal liquefaction of cellulose in
subcritical water-the role of crystallinity on the cellulose reactivity. RSC Advances , 3 (27),
11035-11044.
59. Benoit, M., Rodrigues, A., Zhang, Q.H. et al. (2011) Depolymerization of cellulose assisted
by a nonthermal atmospheric plasma. Angewandte Chemie-International Edition , 50 (38),
8964-8967.
60. Orozco, A., Ahmad, M., Rooney, D. and Walker, G. (2007) Dilute acid hydrolysis of
cellulose and cellulosic bio-waste using a microwave reactor system. Process Safety and
Environmental Protection , 85 (B5), 446-449.
61. Fan, J.J., De Bruyn, M., Budarin, V.L. et al. (2013) Direct microwave-assisted hydrothermal
depolymerization of cellulose. Journal of the American Chemical Society , 135 (32),
11728-11731.
62. Dutta, S. and Pal, S. (2014) Promises in direct conversion of cellulose and lignocellulosic
biomass to chemicals and fuels: combined solvent-nanocatalysis approach for biorefinery.
Biomass and Bioenergy , 62 , 182-197.
63. Song, J.L., Fan, H.L., Ma, J. and Han, B.X. (2013) Conversion of glucose and cellulose into
value-added products in water and ionic liquids. Green Chemistry , 15 (10), 2619-2635.
64. Liu, B., Zhang, Z.H. and Zhao, Z.K. (2013) Microwave-assisted catalytic conversion of
cellulose into 5-hydroxymethylfurfural in ionic liquids. Chemical Engineering Journal ,
215 , 517-521.
65. Kaldstrom, M., Kumar, N. and Murzin, D.Y. (2011) Valorization of cellulose over metal
supported mesoporous materials. Catalysis Today , 167 (1), 91-95.
66. Kusema, B.T., Faba, L., Kumar, N. et al. (2012) Hydrolytic hydrogenation of hemicellulose
over metal modified mesoporous catalyst. Catalysis Today , 196 (1), 26-33.
67. Oltmanns, J.U., Palkovits, S. and Palkovits, R. (2013) Kinetic investigation of sorbitol and
xylitol dehydration catalyzed by silicotungstic acid in water. Applied Catalysis A-General ,
456 , 168-173.
68. Li, N. and Huber, G.W. (2010) Aqueous-phase hydrodeoxygenation of sorbitol with pt/
SiO2-Al2O3: identification of reaction intermediates. Journal of Catalysis , 270 (1),
48-59.
69. Menon, V. and Rao, M. (2012) Trends in bioconversion of lignocellulose: biofuels, platform
chemicals and biorefinery concept. Progress in Energy and Combustion Science , 38 (4),
522-550.
70. Varanasi, P., Singh, P., Auer, M. et al. (2013) Survey of renewable chemicals produced
from lignocellulosic biomass during ionic liquid pretreatment. Biotechnology for
Biofuels , 6 , 14.
Search WWH ::




Custom Search