Environmental Engineering Reference
In-Depth Information
35. Patel, M., Crank, M., Dornsburg, V. et al . (2006) Medium and Long-Term Opportunities and
Risks of the Biotechnological Production of Bulk Chemicals From Renewable Resources ,
The BREW Project, Utrecht, Netherlands.
36. Balat, M. (2011) Production of bioethanol from lignocellulosic materials via the biochemi-
cal pathway: a review. Energy Conversion and Management , 52 (2), 858-875.
37. Balat, M., Balat, H. and Oz, C. (2008) Progress in bioethanol processing. Progress in
Energy and Combustion Science , 34 (5), 551-573.
38. Limayem, A. and Ricke, S.C. (2012) Lignocellulosic biomass for bioethanol production:
current perspectives, potential issues and future prospects. Progress in Energy and
Combustion Science , 38 (4), 449-467.
39. Viikari, L., Vehmaanpera, J. and Koivula, A. (2012) Lignocellulosic ethanol: from science
to industry, Biomass and Bioenergy , 46 13-24.
40. Maki-Arvela, P., Salmi, T., Holmbom, B. et al. (2011) Synthesis of sugars by hydrolysis of
hemicelluloses-a review. Chemical Reviews , 111 (9), 5638-5666.
41. Zaldivar, J., Nielsen, J. and Olsson, L. (2001) Fuel ethanol production from lignocellulose:
a challenge for metabolic engineering and process integration. Applied Microbiology and
Biotechnology , 56 (1-2), 17-34.
42. Xu, Y.X. and Hanna, M.A. (2010) Optimum conditions for dilute acid hydrolysis of
hemicellulose in dried distillers grains with solubles. Industrial Crops and Products , 32 (3),
511-517.
43. Cara, P.D., Pagliaro, M., Elmekawy, A. et al. (2013) Hemicellulose hydrolysis catalysed by
solid acids. Catalysis Science and Technology , 3 (8), 2057-2061.
44. Ormsby, R., Kastner, J.R. and Miller, J. (2012) Hemicellulose hydrolysis using solid acid
catalysts generated from biochar. Catalysis Today , 190 (1), 89-97.
45. Zhuang, J.P., Liu, Y., Wu, Z. et al. (2009) Hydrolysis of wheat straw hemicellulose and
detoxification of the hydrolysate for xylitol production. Bioresources , 4 (2), 674-686.
46. Zhou, L.P., Shi, M.T., Cai, Q.Y. et al. (2013) Hydrolysis of hemicellulose catalyzed by
hierarchical H-USY zeolites-the role of acidity and pore structure. Microporous and
Mesoporous Materials , 169 , 54-59.
47. Dutta, S., De, S., Saha, B. and Alam, M.I. (2012) Advances in conversion of hemicellulosic
biomass to furfural and upgrading to biofuels. Catalysis Science and Technology , 2 (10),
2025-2036.
48. Moller, M. and Schroder, U. (2013) Hydrothermal production of furfural from xylose and
xylan as model compounds for hemicelluloses. RSC Advances , 3 (44), 22253-22260.
49. W. De Jong and G. Marcotullio, Overview of biorefineries based on co-production of
furfural, existing concepts and novel developments, International Journal of Chemical
Reactor Engineering , 8 , 1-24 (2010).
50. Wang, L., Fan, X.G., Tang, P.W. and Yuan, Q.P. (2013) Xylitol fermentation using hemicel-
lulose hydrolysate prepared by acid pre-impregnated steam explosion of corncob. Journal
of Chemical Technology and Biotechnology , 88 (11), 2067-2074.
51. Kautola, H. (1990) Itaconic acid production from xylose in repeated-batch and continuous
bioreactors. Applied Microbiology and Biotechnology , 33 (1), 7-11.
52. Kobayashi, H., Komanoya, T., Guha, S.K. et al. (2011) Conversion of cellulose into renew-
able chemicals by supported metal catalysis. Applied Catalysis A-General , 409 , 13-20.
53. Wilson, D.B. (2011) Microbial diversity of cellulose hydrolysis. Current Opinion in
Microbiology , 14 (3), 259-263.
Search WWH ::




Custom Search