Environmental Engineering Reference
In-Depth Information
71. Krivorotova, T. and Sereikaite, J. (2014) Seasonal changes of carbohydrates composition in
the tubers of jerusalem artichoke. Acta Physiologiae Plantarum , 36 (1), 79-83.
72. Ricca, E., Calabro, V., Curcio, S. and Iorio, G. (2009) Fructose production by chicory inulin
enzymatic hydrolysis: a kinetic study and reaction mechanism. Process Biochemistry , 44
(4), 466-470.
73. Shen, X., Wang, Y.X., Hu, C.W. et al. (2012) One-pot conversion of inulin to furan deriva-
tives catalyzed by sulfated TiO2/mordenite solid acid. Chemcatchem , 4 (12), 2013-2019.
74. Ajavakom, A., Supsvetson, S., Somboot, A. and Sukwattanasinitt, M. (2012) Products from
microwave and ultrasonic wave assisted acid hydrolysis of chitin. Carbohydrate Polymers ,
90 (1), 73-77.
75. Chen, X., Chew, S.L., Kerton, F.M. and Yan, N. (2014) Direct conversion of chitin into a
N-containing furan derivative. Green Chemistry , 16 (4), 2204-2212.
76. Anastasakis, K., Ross, A.B. and Jones, J.M. (2011) Pyrolysis behaviour of the main carbo-
hydrates of brown macro-algae. Fuel , 90 (2), 598-607.
77. Ruiz, H.A., Rodriguez-Jasso, R.M., Fernandes, B.D. et al. (2013) Hydrothermal processing,
as an alternative for upgrading agriculture residues and marine biomass according to the
biorefinery concept: a review. Renewable and Sustainable Energy Reviews , 21 , 35-51.
78. Pan, X.J., Arato, C., Gilkes, N. et al. (2005) Biorefining of softwoods using ethanol
organosolv pulping: preliminary evaluation of process streams for manufacture of fuel-
grade ethanol and co-products. Biotechnology and Bioengineering , 90 (4), 473-481.
79. Higson, A. and Smith, C. (2011) Lignin. NNFCC Renewable Chemicals Factsheet The
National Non-Food Crops Centre, York, UK.
80. Baker, D.A. and Rials, T.G. (2013) Recent advances in low-cost carbon fiber manufacture
from lignin. Journal of Applied Polymer Science , 130 (2), 713-728.
81. Ruiz-Duenas, F.J. and Martinez, A.T. (2009) Microbial degradation of lignin: how a bulky
recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this.
Microbial Biotechnology , 2 (2), 164-177.
82. Azadi, P., Inderwildi, O.R., Farnood, R. and King, D.A. (2013) Liquid fuels, hydrogen and
chemicals from lignin: a critical review. Renewable and Sustainable Energy Reviews , 21 ,
506-523.
83. Wang, H., Tucker, M. and Ji, Y. (2013) Recent development in chemical depolymerization
of lignin: a review, Journal of Applied Chemistry , 2013 , 1-9.
84. Kang, S.M., Li, X.L., Fan, J. and Chang, J. (2013) Hydrothermal conversion of lignin: a
review. Renewable and Sustainable Energy Reviews , 27 , 546-558.
85. Zhang, X., Tu, M.B. and Paice, M.G. (2011) Routes to potential bioproducts from lignocel-
lulosic biomass lignin and hemicelluloses. Bioenergy Research , 4 (4), 246-257.
86. Ye, Y.Y., Zhang, Y., Fan, J. and Chang, J. (2012) Novel method for production of phenolics
by combining lignin extraction with lignin depolymerization in aqueous ethanol. Industrial
and Engineering Chemistry Research , 51 (1), 103-110.
87. Iyayi, C.B. and Dart, R.K. (1982) The degradation of p-coumaryl alcohol by Aspergillus
Flavus. Microbiology , 128 , 1473-1482.
88. Dale, B.E., Allen, M.S., Laser, M. and Lynd, L.R. (2009) Protein feeds coproduction in
biomass conversion to fuels and chemicals. Biofuels Bioproducts and Biorefining-Biofpr , 3
(2), 219-230.
89. Hayashi, Y., Yamaguchi, J., Sumiya, T. and Shoji, M. (2004) Direct proline-catalyzed asym-
metric alpha-aminoxylation of ketones. Angewandte Chemie-International Edition , 43 (9),
1112-1115.
Search WWH ::




Custom Search