Information Technology Reference
In-Depth Information
20. Große, D., Wille, R., Dueck, G.W., Drechsler, R.: Exact synthesis of elementary
quantum gate circuits for reversible functions with dont cares. In: Proceedings of
the International Symposium on Multi-Valued Logic, Dallas, Texas, pp. 214-219,
May 2008
21. Große, D., Wille, R., Dueck, G., Drechsler, R.: Exact multiple control toffoli net-
work synthesis with SAT techniques. IEEE Trans. CAD 28 (5), 703175 (2009)
22. Gupta, P., Agarwal, A., Jha, N.K.: An algorithm for synthesis of reversible logic
ciruits. IEEE Trans. Comput. Aided Des. 25 (11), 2317-2330 (2006)
23. Gupta, P., Jha, N.K., Lingappan, L.: A test generation framework for quantum
cellular automata circuits. IEEE Trans. VLSI Sys. 15 (1), 24-36 (2007)
24. Hanninen, I., Takala, J.: Robust adders based on quantum-dot cellular automata,
In: Proceedings of the IEEE International Conference Application-Specific Sys-
tems, Architectures and Processors (ASAP), Montreal, QC, Canada, pp. 391-396,
Jul 2007
25. Huang, J., Momenzadeh, M., Lombardi, F.: Analysis of missing and additional
cell defects in sequential quantum-dot cellular automata. Integr. VLSI J. 40 (1),
503-515 (2007)
26. Jin, Z.: Fabrication and measurement of molecular quantum cellular automata
(QCA) device. Ph.D. thesis, University of Notre Dame (2006)
27. Kartschoke, P.: Implementation issues in conservative logic networks. In: M.S.E.E.
Thesis, University of Virginia, Charlottesville, VA (1992)
28. Kim, K., Wu, K., Karri, R.: The robust QCA adder designs using composable QCA
building blocks. IEEE Trans. Comput. Aided Des. 26 (1), 176-183 (2007)
29. Kong, K., Shang, Y., Lu, R.: An optimized majority logic synthesis methodology for
quantum-dot cellular automata. IEEE Trans. Nanotechnol. 9 (2), 170-183 (2010)
30. Kostinski, N., Fok, M.P., Prucnal, P.R.: Experimental demonstration of an all-
optical fiber-based Fredkin gate. Opt. Lett. 34 (18), 2766-2768 (2009)
31. Landauer, R.: Irreversibility and heat generation in the computational process.
IBMJ.Res.Dev. 5 , 183-191 (1961)
32. Chang, L., Frank, D.J., Montoye, R.K., Koester, S.J., Ji, B.L., Coteus, P.W.,
Dennard, R.H., Haensch, W.: Practical strategies for power-ecient computing
technologies. Proc. IEEE 98 (2), 215-236 (2010)
33. Lent, C., Isaksen, B., Lieberman, M.: Molecular quantum-dot cellular automata.
J. Am. Chem. Soc. 125 (4), 1056-1063 (2003)
34. Lent, C., Tougaw, P.: A device architecture for computing with quantum dots.
Proc. IEEE 85 (4), 541-557 (1997)
35. Liu, W., Srivastava, S., Lu, L., O'Neill, M., Swartzlander, E.: Are QCA cryp-
tographic circuits resistant to power analysis attack? IEEE Trans. Nanotechnol.
11 (6), 1239-1251 (2012)
36. Lu, Y., Liu, M., Lent, C.: Molecular quantum-dot cellular automata: from molec-
ular structure to circuit dynamics. J. Appl. Phys. 102 (2007) (Article No. 034311)
37. Ma, X., Huang, J., Metra, C., Lombardi, F.: Reversible gates and testability of one
dimensional arrays of molecular QCA. J. Elect. Test. 24 (1-3), 1244-1245 (2008)
38. Ma, X., Huang, J., Metra, C., Lombardi, F.: Detecting multiple faults in one-
dimensional arrays of reversible qca gates. J. Elect. Test. 25 (1), 39-54 (2009)
39. Mahammad, S., Veezhinathan, K.: Constructing online testable circuits using
reversible logic. IEEE Trans. Instrum. Meas. 59 , 101-109 (2010)
40. Maslov, D., Dueck, G.W.: Reversible cascades with minimal garbage. IEEE Trans.
Comput. Aided Des. 23 (11), 1497-1509 (2004)
Search WWH ::




Custom Search