Information Technology Reference
In-Depth Information
sequential circuits based on stuck-at-fault model, as well as, reversible circuits
implemented in QCA circuits having single missing/additional cell defect.
References
1. QCADesigner. http://waluslab.ece.ubc.ca/qcadesigner/
2. IEEE. All rights reserved. Reprinted with permission from Thapliyal,
H., Ranganathan, N., Kotiyal, S.: Design of testable reversible sequential circuits.
IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 21 (7), 1201-1209 (2013)
3. Alam, M.T., Kurtz, S.J., Siddiq, M.A.J., Niemier, M.T., Bernstein, G.H., Hu, X.S.,
Porod, W.: On-chip clocking of nanomagnet logic lines and gates. IEEE Trans.
Nanotechnol. 11 (2), 273-286 (2012)
4. Anderson, N., Ercan, I., Ganesh, N.: Toward nanoprocessor thermodynamics. In:
2012 12th IEEE Conference on Nanotechnology (IEEE-NANO), pp. 1-6 (2012)
5. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17 , 525-532
(1973)
6. Bhanja, S., Ottavi, M., Lombardi, F., Pontarelli, S.: QCA circuits for robust copla-
nar crossing. J. Electron. Test. 23 (2-3), 193-210 (2007)
7. Bhanja, S., Pulecio, J.: A review of magnetic cellular automata systems. In: 2011
IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2373-2376.
IEEE (2011)
8. Bubna, M., Goyal, N., Sengupta, I.: A DFT methodology for detecting bridging
faults in reversible logic circuits. In: Proceedings of 2007 IEEE Region 10 Confer-
ence, Tencon 2007, Taipei, pp. 1-4, Oct 2007
9. Cho, H., Swartzlander, E.: Adder designs and analyses for quantum-dot cellular
automata. IEEE Trans. Nanotechnol. 6 (3), 374-383 (2007)
10. Cho, H., Swartzlander, E.: Serial parallel multiplier design in quantum-dot cel-
lular automata. In: Proceedings of the IEEE Symposium Computer Arithmetic
(ARITH), Montepellier, France, pp. 7-15 (2007)
11. Chuang, M.L., Wang, C.Y.: Synthesis of reversible sequential elements. J. Emerg.
Technol. Comput. Syst. 3 (4), 1-19 (2008)
12. Dalui, M., Sen, B., Sikdar, B.K.: Fault tolerant QCA logic design with coupled
majority-minority gate. Int. J. Comput. Appl. 1 (29), 81-87 (2010)
13. Ercan, I., Anderson, N.: Heat dissipation bounds for nanocomputing: theory and
application to QCA. In: 2011 11th IEEE Conference on Nanotechnology (IEEE-
NANO), pp. 1289-1294 (2011)
14. Farazmand, N., Zamani, M., Tahoori, M.B.: Online fault testing of reversible logic
using dual rail coding. In: Proceedings of IEEE International On-Line Testing
Symposium, pp. 204-205, May 2010
15. Fijany, A., Toomarian, B.N.: New design for quantum dots cellular automata to
obtain fault tolerant logic gates. J. Nanopart. Res. 3 (1), 27-37 (2001)
16. Fijany, A., Toomarian, B.N.: New design for quantum dots cellular automata to
obtain fault tolerant logic gates. J. Nanopart. Res. 3 , 27-37 (2001)
17. Frank, M.: Approaching the physical limits of computing. In: Proceedings of
ISMVL 2005, The Thirty-Fifth International Symposium on Multiple-Valued
Logic, Calgary, Canada, pp. 168-185, May 2005
18. Fredkin, E., Toffoli, T.: Conservative logic. Int. J. Theor. Phys. 21 , 219-253 (1982)
19. Frost-Murphy, S., Ottavi, M., Frank, M., DeBenedictis, E.: On the design of
reversible QDCA systems. Technical Report SAND2006-5990, Sandia National
Laboratories (2006)
Search WWH ::




Custom Search