Biomedical Engineering Reference
In-Depth Information
15. A. Santorelli, M. Popovic, SAR distribution in microwave breast screening: results with
TWTLTLA wideband antenna, in Seventh International Conference on Intelligent Sensors,
Sensor Networks and Information Processing, pp. 11-16, 6-9 Dec 2011
16. F. Shahrokhi, K. Abdelhalim, D. Serletis, P.L. Carlen, R. Genov, The 128-channel fully
differential
digital
integrated
neural
recording
and
stimulation
interface.
IEEE
Trans.
Biomed. Circuits Syst. 4(3), 149-161 (2010)
17. M. Chae, Z. Yang, M.R. Yuce, L. Hoang, W. Liu, A 128-channel 6 mW wireless neural
recording IC with spike feature extraction and UWB transmitter. IEEE Trans. Neural Syst.
Rehabil. Eng. 17, 312-321 (2009)
18. Y. Gao, Y. Zheng, S. Diao, W. Toh, C. Ang, M. Je, and C. Heng, Low-power ultra-wideband
wireless telemetry transceiver for medical sensor applications. IEEE Trans. Biomed. Eng.
58(3), 768, 772 (2011)
19. K.M.S. Thotahewa, A.I. AL-Kalbani, J.-M. Redoute, M.R. Yuce, Electromagnetic Effects of
Wireless Transmission for Neural Implants, Neural Computation, Neural Devices, and
Neural Prosthesis (Springer, New York, 2014)
20. O. Novak, C. Charles, R.B. Brown, A fully integrated 19 pJ/pulse UWB transmitter for
biomedical
applications
implemented
in
65 nm
CMOS
technology,
in
2011
IEEE
International Conference on Ultra-Wideband (ICUWB), pp. 72-75, 14-16 Sept 2011
21. W.-N. Liu, T.-H. Lin, An energy-efficient ultra-wideband transmitter with an FIR pulse-
shaping filter, in International Symposium on VLSI Design, Automation, and Test, pp. 1-4,
23-25 Apr 2012
22. T. Koike-Akino, SAR analysis in tissues for in vivo UWB body area networks, in IEEE
Global Telecommunications Conference, pp. 1-6, 30 Nov-4 Dec 2009
23. P.J. Dimbylow, Fine resolution calculations of SAR in the human body for frequencies up to
3 GHz. Phys. Med. Biol. 47(16), 2835-2846 (2002)
24. M.R. Basar, M.F.B.A. Malek, K.M. Juni, M.I.M. Saleh, M.S. Idris, L. Mohamed, N. Saudin,
N.A. Mohd Affendi, A. Ali, The use of a human body model to determine the variation of
path losses in the human body channel in wireless capsule endoscopy. Prog. Electromagnet.
Res. 133, 495-513 (2014)
25. D. Kurup, M. Scarpello, G. Vermeeren, W. Joseph, K. Dhaenens, F. Axisa, L. Martens, D.
Vande Ginste, H. Rogier, J. Vanfleteren, In-body path loss models for implants in
heterogeneous human tissues using implantable slot dipole conformal flexible antennas.
EURASIP J. Wireless Commun. Netw. ISSN: 1687-1499 (2011)
26. A. Khaleghi, I. Balasingham, Improving in-body ultra wideband communication using near-
field coupling of the implanted antenna. Microw. Opt. Technol. Lett. 51(3), 585-589 (2009)
27. A. Khaleghi, R. Chávez-Santiago, I. Balasingham, Ultra-wideband statistical propagation
channel model for implant sensors in the human chest. IET Microwaves Antennas Propag.
5(15), 1805-1812 (2011)
28. CST Studio Suite TM , CST AG, Germany, http://www.cst.com , 2014
29. FCC 02-48 (UWB First Report and Order), 2002
30. S. Gabriel, R.W. Lau, C. Gabriel, The dielectric properties of biological tissues: III.
parametric models for the dielectric spectrum of tissues. Phys. Med. Biol. 41(11), 2271-2293
(1996)
31. M. O'Halloran, M. Glavin, E. Jones, Frequency-dependent modelling of ultra-wideband
pulses in human tissue for biomedical applications, in IET Irish Signals and Systems
Conference, pp. 297-301 (2006)
32. S.C. DeMarco, G. Lazzi, W. Liu, J.D. Weiland, M.S. Humayun, Computed SAR and thermal
elevation in a 0.25-mm 2-D model of the human eye and head in response to an implanted
retinal stimulator—part I: models and methods. IEEE Trans. Antennas Propag. 51(9),
2274-2285 (2003)
33. C. Gabriel, S. Gabriel, R.W. Lau, The dielectric properties of biological tissues: I. Literature
survey. Phys. Med. Biol. 41(11), 2231-2249 (1996)
Search WWH ::




Custom Search