Biomedical Engineering Reference
In-Depth Information
without violating SAR/SA limits, as well as the outdoor FCC regulations for this
particular model.
Acknowledgment The authors would like to thank Dr. Tharaka Dissanayake for his help in
designing the UWB antenna used for the high frequency simulations. Also, special thank should
be given to Monash e-Research Centre, Monash University, Australia for their cooperation in
assisting this work by providing the high performance computing facility for the computationally
intensive simulations.
References
1. N. Gopalsami, I. Osorio, S. Kulikov, S. Buyko, A. Martynov, A.C. Raptis, SAW Microsensor
Brain Implant for Prediction and Monitoring of Seizures. IEEE Sens. J. 7(7), 977-982 (2007)
2. A.V. Nurmikko, J.P. Donoghue, L.R. Hochberg, W.R. Patterson, Y.-K. Song, C.W. Bull,
D.A. Borton, F. Laiwalla, S. Park, Y. Ming, J. Aceros, Listening to brain microcircuits for
interfacing
with
external
world.
Proc.
IEEE
Prog.
Wirel.
Implantable
Microelectron.
Neuroeng. Devices 98(3), 375-388 (2010)
3. C. Cavallotti, M. Piccigallo, E. Susilo, P. Valdastri, A. Menciassi, P. Dario, An integrated
vision system with autofocus for wireless capsular endoscopy. Sens. Actuators, A 156(1),
72-78 (2009)
4. X. Chen, X. Zhang, L. Zhang, X. Li, N. Qi, H. Jiang, Z. Wang, A wireless capsule endoscope
system with low-Power controlling and processing ASIC. IEEE Trans. Biomed. Circ. Syst.
3(1), 11-22 (2009)
5. ICNIRP, Guidelines for Limiting to time varying electric, magnetic, and electromagnetic
fields (up to 300 GHz), in International Commission on Non-ionizing Radiation Protection,
1997
6. Institute of Electrical and Electronics Engineers (IEEE), in IEEE Standard for Safety Levels
with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to
300 GHz. IEEE Std C95.1-2005 (2005)
7. P. Soontornpipit, Effects of radiation and SAR from wireless implanted medical devices on
the human body. J. Med. Assoc. Thai. 95(2), 189-197 (2012)
8. L. Xu, M.Q.H. Meng, H. Ren, Y. Chan, Radiation characteristics of ingestible wireless
devices in human intestine following radio frequency exposure at 430, 800, 1200, and
2400 MHz. IEEE Trans. Antennas Propag. 57(8), 2418-2428 (2009)
9. Q. Wang, J. Wang, SA/SAR analysis for multiple UWB pulse exposure, in Asia-Pacific
Symposium on Electromagnetic Compatibility and 19th International Zurich Symposium on
Electromagnetic Compatibility, pp. 212-215, 19-23 May 2008
10. M. Klemm, G. Troester, EM energy absorption in the human body tissues due to UWB
antennas. Prog. Electromagnet. Res. 62, 261-280 (2006)
11. V. De Santis, M. Feliziani, F. Maradei, Safety assessment of UWB radio systems for body
area network by the FD2TD method. IEEE Trans. Magn. 46(8), 3245-3248 (2010)
12. Z.N. Chen, A. Cai, T.S.P. See, X. Qing, M.Y.W. Chia, Small planar UWB antennas in
proximity of the human head. IEEE Trans. Microw. Theor. Tech. 54(4), 1846-1857 (2006)
13. C. Buccella, V. De Santis, M. Feliziani, Prediction of temperature increase in human eyes due
to RF sources. IEEE Trans. Electromagn. Compat. 49(4), 825-833 (2007)
14. N.I.M. Yusoff, S. Khatun, S.A. AlShehri, Characterization of absorption loss for UWB body
tissue
propagation
model,
in
IEEE
9th
Malaysia
International
Conference
on
Communications, pp. 254-258, 15-17 Dec 2009
 
Search WWH ::




Custom Search