Biomedical Engineering Reference
In-Depth Information
34. A. Peyman, C. Gabriel, E.H. Grant, G. Vermeeren, L. Martens, Variation of the dielectric
properties of tissues with age: the effect on the values of SAR in children when exposed to
walkie-talkie devices. Phys. Med. Biol. 54(2), 227-241 (2009)
35. C. Gabriel, Dielectric properties of biological tissue: variation with age. Bioelectromagnetics,
26(7), 12-18 (2005)
36. J. Wang, O. Fujiwara, S. Watanabe, Approximation of aging effect on dielectric tissue
properties for SAR assessment of mobile telephones. IEEE Trans. Electromagn. Compat.
48(2), 408-413 (2006)
37. K. Lichtenecker, Die dielektrizitatskonstante naturlicher und kunstlicher mischkorper. Phys.
Z. 27, 115-158 (1926)
38. P.L. Altman, D.S. Dittmer, Biology Data Book: Blood and Other Body Fluids (Federation of
American Societies for Experimental Biology, Washington, DC, 1974)
39. K.M.S. Thotahewa, J.M. Redoute, M.R. Yuce, SAR, SA, and temperature variation in the
human head caused by IR-UWB implants operating at 4 GHz. IEEE Trans. Microw. Theory
Tech. 61, 2161-2169 (2013)
40. T. Weiland, M. Timm, I. Munteanu, A practical guide to 3-D simulation. IEEE Microwave
Mag. 9(6), 62-75 (2008)
41. M. Clement, T. Weiland, Discrete electromagnetism with finite integral technique. Prog.
Electromagn. Res. 32, 65-87 (2001)
42. IEEE C95.3-2002, Recommended practice for measurements and computations of radio
frequency electromagnetic fields with respect to human exposure to such fields, 100 kHz-
300 GHz, in IEEE Standard C95.3, 2002
43. ACGIH, Threshold limit values for chemical substances and physical agents and biological
exposure indices, in American Conference of Governmental Industrial Hygienists, 1996
44. H.H. Pennes, Analysis of tissue and arterial blood temperatures in resting forearm. J. Appl.
Physiol. 1, 93-122 (1948)
45. M. Hoque, O.P. Gandhi, Temperature distributions in the human leg for VLF-VHF exposures
at the ANSI recommended safety levels. IEEE Trans. Biomed. Eng. 35, 442-449 (1988)
46. P. Bernardi, M. Cavagnaro, S. Pisa, E. Piuzzi, Specific absorption rate and temperature
elevation in a subject exposed in the far-field of radio-frequency sources operating in the
10-900-MHz range. IEEE Trans. Biomed. Eng. 50(3), 295-304 (2003)
47. S.H. Lee, J. Lee, Y.J. Yoon, S. Park, C. Cheon, K. Kim, S. Nam, A wideband spiral antenna
for ingestible capsule endoscope systems: experimental results in a human phantom and a
pig. IEEE Trans. Biomed. Eng. 58(6), 1734-1741 (2011)
48. A. Moglia, A. Menciassi, M.O. Schurr, P. Dario, Wireless capsule endoscopy: from
diagnostic devices to multipurpose robotic systems. Biomed. Microdevices 9(2), 235-243
(2007)
49. T. Dissanayake, K.P. Esselle, M.R. Yuce, Dielectric loaded impedance matching for
wideband implanted antennas. IEEE Trans. Microw. Theory Tech. 57(10), 2480-2487 (2009)
50. K.M.S. Thotahewa, J.M. Redoute, M.R. Yuce, Electromagnetic power absorption of the
human
abdomen
from
IR-UWB
based
wireless
capsule
endoscopy
devices,
in
IEEE
International Conference on Ultra-Wideband (ICUWB), pp. 79-84, 2013
51. K.M.S. Thotahewa, J.-M. Redoute, M.R. Yuce, Electromagnetic and thermal effects of IR-
UWB wireless implant systems on the human head, in 35th Annual International Conference
of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5179-5182, Osaka,
Japan, Jul 2013
52. G.
Pan,
L.
Wang,
Swallowable
wireless
capsule
endoscopy:
Progress
and
technical
challenges. Gastroenterol. Res. Pract. 2012 (841691), 9 (2012)
53. M.R. Yuce, T. Dissanayake, Easy-to-swallow wireless telemetry. IEEE Microw. Mag. 13,
90-101 (2012)
54. C. Kim, S. Nooshabadi, Design of a tunable all-digital UWB pulse generator CMOS chip for
wireless endoscope. IEEE Trans. on Bio-Med. Circuits Syst. 4(2), 118-124 (2010)
Search WWH ::




Custom Search