Environmental Engineering Reference
In-Depth Information
54. Zhou YF, Riehle FS, Yuan Y, Schleiermacher HF, Niggemann M, Urban GA, Kruger M
(2010) Improved efficiency of hybrid solar cells based on non-ligand-exchanged CdSe
quantum dots and poly(3-hexylthiophene). Appl Phys Lett 96(1):13304. doi: 10.1063/
1.3280370
55. van Hal PA, Christiaans MPT, Wienk MM, Kroon JM, Janssen RAJ (1999) Photoinduced
electron transfer from conjugated polymers to TiO2. J Phys Chem B 103(21):4352-4359
56. van Hal PA, Wienk MM, Kroon JM, Verhees WJH, Slooff LH, van Gennip WJH, Jonkheijm
P, Janssen RAJ (2003) Photoinduced electron transfer and photovoltaic response of a
MDMO-PPV : TiO2 bulk-heterojunction. Adv Mater 15(2):118-121
57. Lin YT, Zeng TW, Lai WZ, Chen CW, Lin YY, Chang YS, Su WF (2006) Efficient
photoinduced
charge
transfer
in
TiO2
nanorod/conjugated
polymer
hybrid
materials.
Nanotechnology 17(23):5781-5785. doi: 10.1088/0957-4484/17/23/012
58. Lancelle-Beltran E, Prene P, Boscher C, Belleville P, Buvat P, Lambert S, Guillet F,
Boissiere C, Grosso D, Sanchez C (2006) Nanostructured hybrid solar cells based on self-
assembled mesoporous titania thin films. Chem Mater 18(26):6152-6156. doi: 10.1021/
Cm060925z
59. Her HJ, Kim JM, Kang CJ, Kim YS (2008) Hybrid photovoltaic cell with well-ordered
nanoporous
titania-P3HT
by
nanoimprinting
lithography.
J
Phys
Chem
Solids
69(5-6):1301-1304. doi: 10.1016/j.jpcs.2007.10.121
60. Atienzar P, Ishwara T, Horie M, Durrant JR, Nelson J (2009) Hybrid polymer-metal oxide
solar
cells
by
in
situ
chemical
polymerization.
J
Mater
Chem
19(30):5377-5380.
doi: 10.1039/B902271f
61. Jiang KJ, Manseki K, Yu YH, Masaki N, Suzuki K, Song YL, Yanagida S (2009)
Photovoltaics based on hybridization of effective dye-sensitized titanium oxide and hole-
conductive
polymer
P3HT.
Adv
Funct
Mater
19(15):2481-2485.
doi: 10.1002/adfm.
200900283
62. Zhu R, Jiang CY, Liu B, Ramakrishna S (2009) Highly Efficient Nanoporous TiO2-
Polythiophene Hybrid Solar Cells Based on Interfacial Modification Using a Metal-Free
Organic Dye. Adv Mater 21(9):994-1000. doi: 10.1002/adma.200802388
63. Bartholomew GP, Heeger AJ (2005) Infiltration of regioregular poly[2,2'-(3-
hexylthiopene)] into random nanocrystalline TiO2 networks. Adv Funct Mater 15(4):
677-682. doi: 10.1002/adfm.200400277
64. Boucle J, Chyla S, Shaffer MSP, Durrant JR, Bradley DDC, Nelson J (2008) Hybrid solar
cells from a blend of poly(3-hexylthiophene) and ligand-capped TiO2 nanorods. Adv Funct
Mater 18(4):622-633. doi: 10.1002/adfm.200700280
65. Lin YY, Chu TH, Li SS, Chuang CH, Chang CH, Su WF, Chang CP, Chu MW, Chen CW
(2009) Interfacial nanostructuring on the performance of polymer/TiO2 nanorod bulk
heterojunction solar cells. J Am Chem Soc 131(10):3644-3649. doi: 10.1021/Ja8079143
66. Koster LJA, van Strien WJ, Beek WJE, Blom PWM (2007) Device operation of conjugated
polymer/zinc oxide bulk heterojunction solar cells. Adv Funct Mater 17(8):1297-1302.
doi: 10.1002/adfm.200600371
67. Sun BQ, Greenham NC (2006) Improved effciency of photovoltaics based on CdSe
nanorods and poly(3-hexylthiophene) nanofibers. Phys Chem Chem Phys 8(30):3557-3560.
doi: 10.1039/B604734n
68. Wu Y, Zhang GQ (2010) Performance enhancement of hybrid solar cells through chemical
vapor annealing. Nano Lett 10(5):1628-1631. doi: 10.1021/Nl904095n
69. Liao HC, Chen SY, Liu DM (2009) In situ growing CdS single-crystal nanorods via P3HT
polymer as a soft template, for enhancing photovoltaic performance. Macromolecules
42(17):6558-6563. doi: 10.1021/Ma900924y
70. Chang CH, Huang TK, Lin YT, Lin YY, Chen CW, Chu TH, Su WF (2008) Improved
charge separation and transport efficiency in poly(3-hexylthiophene)-TiO2 nanorod bulk
heterojunction solar cells. J Mater Chem 18(19):2201-2207. doi: 10.1039/B800071a
71. Said AJ, Poize G, Martini C, Ferry D, Marine W, Giorgio S, Fages F, Hocq J, Boucle J,
Nelson J, Durrant JR, Ackermann J (2010) Hybrid bulk heterojunction solar cells based on
Search WWH ::




Custom Search