Environmental Engineering Reference
In-Depth Information
36. Zhou YF, Eck M, Kruger M (2010) Bulk-heterojunction hybrid solar cells based on
colloidal nanocrystals and conjugated polymers. Energy Environ Sci 3(12):1851-1864.
doi: 10.1039/C0ee00143k
37. Weickert J, Dunbar RB, Hesse HC, Wiedemann W, Schmidt-Mende L (2011)
Nanostructured organic and hybrid solar cells. Adv Mater 23(16):1810-1828. doi: 10.
1002/adma.201003991
38. Xu T, Qiao Q (2011) Conjugated polymer-inorganic semiconductor hybrid solar cells.
Energy Environ Sci 4(8):2700-2720. doi: 10.1039/C0EE00632G
39. Halme J, Vahermaa P, Miettunen K, Lund P (2010) Device physics of dye solar cells. Adv
Mater 22(35):E210-E234. doi: 10.1002/adma.201000726
40. Boucle
J,
Ravirajan
P,
Nelson
J (2007)
Hybrid
polymer-metal
oxide
thin
films
for
photovoltaic applications. J Mater Chem 17(30):3141-3153. doi: 10.1039/B706547g
41. McGehee MD (2009) Nanostructured organic-inorganic hybrid solar cells. MRS Bull
34(2):95-100
42. Notes: The diffusion length of excitons (L d )in conjugated polymers is typcially around
10 nm, therefore the efficient exciton diffusion requires the film thickness, L \ L d . In the
case of the light absortpion, the typcial absorption length of conjugated films (L a ) is around
50-100 nm, thus the film thickness, L [ L a is required for efficient light harvesting which is
inconsistent with the efficient exicton diffusion
43. Peet J, Kim JY, Coates NE, Ma WL, Moses D, Heeger AJ, Bazan GC (2007) Efficiency
enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nat
Mater 6(7):497-500. doi: 10.1038/Nmat1928
44. Park SH, Roy A, Beaupre S, Cho S, Coates N, Moon JS, Moses D, Leclerc M, Lee K,
Heeger AJ (2009) Bulk heterojunction solar cells with internal quantum efficiency
approaching 100 %. Nat Photonics 3(5):U297-U295. doi: 10.1038/Nphoton.2009.69
45. Chen HY, Hou JH, Zhang SQ, Liang YY, Yang GW, Yang Y, Yu LP, Wu Y, Li G (2009)
Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat Photonics
3(11):649-653. doi: 10.1038/Nphoton.2009.192
46. Liang YY, Xu Z, Xia JB, Tsai ST, Wu Y, Li G, Ray C, Yu LP (2010) For the bright future-
bulk heterojunction polymer solar cells with power conversion efficiency of 7.4 %. Adv
Mater 22(20):E135-E138. doi: 10.1002/adma.200903528
47. Dayal S, Kopidakis N, Olson DC, Ginley DS, Rumbles G (2010) Photovoltaic devices with
a low band gap polymer and CdSe nanostructures exceeding 3 % efficiency. Nano Lett
10(1):239-242. doi: 10.1021/Nl903406s
48. Dayal S, Reese MO, Ferguson AJ, Ginley DS, Rumbles G, Kopidakis N (2010) The effect of
nanoparticle shape on the photocarrier dynamics and photovoltaic device performance of
poly(3-hexylthiophene): CdSe nanoparticle bulk heterojunction solar cells. Adv Funct
Mater 20(16):2629-2635. doi: 10.1002/adfm.201000628
49. Peng XG, Manna L, Yang WD, Wickham J, Scher E, Kadavanich A, Alivisatos AP (2000)
Shape control of CdSe nanocrystals. Nature 404(6773):59-61
50. Peng ZA, Peng XG (2001) Formation of high-quality CdTe, CdSe, and CdS nanocrystals
using CdO as precursor. J Am Chem Soc 123(1):183-184
51. Peng ZA, Peng XG (2001) Mechanisms of the shape evolution of CdSe nanocrystals. J Am
Chem Soc 123(7):1389-1395. doi: 10.1021/Ja0027766
52. Han LL, Qin DH, Jiang X, Liu YS, Wang L, Chen JW, Cao Y (2006) Synthesis of high
quality
zinc-blende
CdSe
nanocrystals
and
their
application
in
hybrid
solar
cells.
Nanotechnology 17(18):4736-4742. doi: 10.1088/0957-4484/17/18/035
53. Lokteva I, Radychev N, Witt F, Borchert H, Parisi J, Kolny-Olesiak J (2010) Surface
treatment of CdSe nanoparticles for application in hybrid solar cells: the effect of multiple
ligand
exchange
with
pyridine.
J
Phys
Chem
C
114(29):12784-12791.
doi: 10.1021/
Jp103300v
Search WWH ::




Custom Search