Environmental Engineering Reference
In-Depth Information
P3HT and porphyrin-modified ZnO nanorods. J Phys Chem C 114(25):11273-11278.
doi: 10.1021/Jp911125w
72. Li D, Xia YN (2004) Electrospinning of nanofibers: reinventing the wheel? Adv Mater
16(14):1151-1170. doi: 10.1002/adma.200400719
73. Greiner A, Wendorff JH (2007) Electrospinning: a fascinating method for the preparation of
ultrathin fibres. Angew Chem Int Edit 46(30):5670-5703. doi: 10.1002/anie.200604646
74. Onozuka K, Ding B, Tsuge Y, Naka T, Yamazaki M, Sugi S, Ohno S, Yoshikawa M,
Shiratori S (2006) Electrospinning processed nanofibrous TiO2 membranes for photovoltaic
applications. Nanotechnology 17(4):1026-1031. doi: 10.1088/0957-4484/17/4/030
75. Shim HS, Na SI, Nam SH, Ahn HJ, Kim HJ, Kim DY, Kim WB (2008) Efficient
photovoltaic device fashioned of highly aligned multilayers of electrospun TiO2 nanowire
array with conjugated polymer. Appl Phys Lett 92(18):183107. doi: 10.1063/1.2919800
76. Zhu R, Jiang CY, Liu XZ, Liu B, Kumar A, Ramakrishna S (2008) Improved adhesion of
interconnected TiO2 nanofiber network on conductive substrate and its application in
polymer photovoltaic devices. Appl Phys Lett 93(1):013102. doi: 10.1063/1.2907317
77. Hochbaum AI, Yang PD (2010) Semiconductor nanowires for energy conversion. Chem
Rev 110(1):527-546. doi: 10.1021/cr900075v
78. Williams SS, Hampton MJ, Gowrishankar V, Ding IK, Templeton JL, Samulski ET,
DeSimone JM, McGehee MD (2008) Nanostructured titania-polymer photovoltaic devices
made
using
PFPE-based
nanomolding
techniques.
Chem
Mater
20(16):5229-5234.
doi: 10.1021/Cm800729q
79. Greene LE, Law M, Tan DH, Montano M, Goldberger J, Somorjai G, Yang PD (2005)
General route to vertical ZnO nanowire arrays using textured ZnO seeds. Nano Lett
5(7):1231-1236. doi: 10.1021/Nl050788p
80. Cao G, Liu D (2008) Template-based synthesis of nanorod, nanowire, and nanotube arrays.
Adv Colloid Interface 136(1-2):45-64
81. Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA (2006) Use of highly-ordered
TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett 6(2):215-218. doi: 10.1021/
Nl052099j
82. Peng KQ, Hu JJ, Yan YJ, Wu Y, Fang H, Xu Y, Lee ST, Zhu J (2006) Fabrication of single-
crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles.
Adv Funct Mater 16(3):387-394. doi: 10.1002/adfm.200500392
83. Kang YM, Park NG, Kim D (2005) Hybrid solar cells with vertically aligned CdTe
nanorods
and
a
conjugated
polymer.
Appl
Phys
Lett
86(11):113101.
doi:
10.1063/
1.1883319
84. Schierhorn
M,
Boettcher
SW,
Kraemer
S,
Stucky
GD,
Moskovits
M
(2009)
Photoelectrochemical
performance
of
CdSe
nanorod
arrays
grown
on
a
transparent
conducting substrate. Nano Lett 9(9):3262-3267. doi: 10.1021/Nl901522b
85. Schierhorn M, Boettcher SW, Peet JH, Matioli E, Bazan GC, Stucky GD, Moskovits M
(2010) CdSe nanorods dominate photocurrent of hybrid CdSe-P3HT photovoltaic cell. ACS
Nano 4(10):6132-6136. doi: 10.1021/Nn101742c
86. Shankar K, Mor GK, Prakasam HE, Varghese OK, Grimes CA (2007) Self-assembled
hybrid
polymer-TiO2
nanotube
array
heterojunction
solar
cells.
Langmuir
23(24):
12445-12449. doi: 10.1021/La7020403
87. Kuo CY, Tang WC, Gau C, Guo TF, Jeng DZ (2008) Ordered bulk heterojunction solar
cells with vertically aligned TiO2 nanorods embedded in a conjugated polymer. Appl Phys
Lett 93(3):033307. doi: 10.1063/1.2937472
88. Tepavcevic S, Darling SB, Dimitrijevic NM, Rajh T, Sibener SJ (2009) Improved hybrid
solar
cells
via
in
situ
UV
polymerization.
Small
5(15):1776-1783.
doi: 10.1002/
smll.200900093
89. Mor GK, Kim S, Paulose M, Varghese OK, Shankar K, Basham J, Grimes CA (2009)
Visible to near-infrared light harvesting in TiO2 nanotube array-P3HT based heterojunction
solar cells. Nano Lett 9(12):4250-4257. doi: 10.1021/Nl9024853
Search WWH ::




Custom Search