Biology Reference
In-Depth Information
52.
Teusink, B., J. Passarge, C. A. Reijenga, et al. Can yeast glycolysis be under-
stood in terms of in vitro kinetics of the constituent enzymes? Testing
biochemistry. European Journal of Biochemistry , 267(17):5313-29, 2000.
53.
Clarke, B. L. Stoichiometric network analysis. Cell Biophysics , 12:237-53, 1988.
54.
Seressiotis, A. and J. E. Bailey. MPS: an artificially intelligent software
system for the analysis and synthesis of metabolic pathways. Biotechnology
and Bioengineering , 31(6):587-602, 1988.
55.
Mavrovouniotis, M. L., G. Stephanopoulos. and G. Stephanopoulos.
Computer aided synthesis of biochemical pathways. Biotechnology and
Bioengineering , 36(11):1119-32, 1990.
56.
Liao, J. C., S. Y. Hou, and Y. P. Chao. Pathway analysis, engineering, and
physiological considerations for redirecting central metabolism. Biotechnology
and Bioengineering , 52(1):129-40, 1996.
57.
Schilling, C.H., J. S. Edwards and B. Ø. Palsson. Toward metabolic phe-
nomics: analysis of genomic data using flux balances. Biotechnology
Progress , 15(3):288-95, 1999.
58.
Schuster, S., D. A. Fell and T. Dandekar. A general definition of metabolic
pathways useful for systematic organization and analysis of complex
metabolic networks. Nature Biotechnology , 18(3):326-32, 2000.
59.
Varma, A. and B. Ø. Palsson. Stoichiometric flux balance models quantitatively
predict growth and metabolic by-product secretion in wild-type Escherichia
coli W3110. Applied and Environmental Microbiology , 60(10):3 724-31, 1994.
60.
Pramanik, J. and J. D. Keasling. Effect of Escherichia coli biomass compo-
sition on central metabolic fluxes predicted by a stoichiometric model.
Biotechnology and Bioengineering , 60(2):230-8, 1998.
61.
Wiback, S. J., R. Mahadevan and B. Ø. Palsson. Using metabolic flux data
to further constrain the metabolic solution space and predict internal flux
patterns: the Escherichia coli spectrum. Biotechnology and Bioengineering ,
86(3):317-31, 2004.
62.
Fischer, E. and U. Sauer. Metabolic flux profiling of Escherichia coli mutants
in central carbon metabolism using GC-MS. European Journal of
Biochemistry , 270(5):880-91, 2003.
63.
Wittmann, C. and E. Heinzle. Modeling and experimental design for
metabolic flux analysis of lysine-producing Corynebacteria by mass spec-
trometry. Metabolic Engineering , 3(2):173-91, 2001.
64.
Schmidt, K., M. Carlsen, J. Nielsen, et al. Modeling isotopomer distribu-
tions in biochemical networks using isotopomer mapping matrices.
Biotechnology and Bioengineering , 55(6):831-40, 1997.
65.
Kelleher, J. K. Flux estimation using isotopic tracers. Common ground for
metabolic physiology. Metabolic Engineering , 3(2):100-10, 2001.
66.
Yang, C., Q. Hua and K. Shimizu. Metabolic flux analysis in Synechocystis
using isotope distribution from 13 C-labeled glucose. Metabolic Engineering ,
4(3):202-16, 2002.
67.
Wiechert, W and A. A. de Graaf. In vivo stationary flux analysis by 13 C
labeling experiments. Advances in Biochemical Engineering/Biotechnology ,
54:109-54, 1996.
68.
Wiechert, W., M. Mollney, N. Isermann, et al. Bidirectional reaction steps in
metabolic networks. III. Explicit solution and analysis of isotopomer labeling
systems. Biotechnology and Bioengineering , 66(2):69-85, 1999.
Search WWH ::




Custom Search