Biology Reference
In-Depth Information
69.
Zupke, C. and G. Stephanopoulos. Modeling of isotope distribution and
intracellular fluxes in metabolic networks using atom mapping matrices.
Biotechnology Progress , 10:489-98, 1994.
70.
Christensen, B. and J. Nielsen. Isotopomer analysis using GC-MS. Metabolic
Engineering , 1(4): 282-90, 1999.
71.
Baxevanis, A. D. Using genomic databases for sequence-based biological
discovery. Molecular Medicine , 9(9-12):185-92, 2003.
72.
Stein, L. D. Integrating biological databases. Nature Reviews Genetics , 4:337-45,
2003.
73.
Lemer, C., E. Antezana, F. Couche, et al. The aMAZE LightgBench: a web
interface to a relational database of cellular processes. Nucleic Acids
Research , 32:D443-8, 2004.
74.
Philippi, S. Light-weight integration of molecular biological databases.
Bioinformatics , 20(1):51-7, 2004.
75.
Hou, B. K., J. S. Kim, J. H. Jun, et al. BioSilico: an integrated metabolic
database system. Bioinformatics , 20(17):3270-2, 2004.
76.
Lee, D.-Y., H. S. Yun, S. Y. Lee, et al. MetaFluxNet: the management of
metabolic reaction information and quantitative metabolic flux analysis.
Bioinformatics , 19(16):2144-6, 2003.
77.
Klamt, S., J. Stelling, M. Ginkel, et al. FluxAnalyzer: exploring structure,
pathways, and flux distributions in metabolic networks on interactive flux
maps. Bioinformatics , 19(2):261-9, 2003.
78.
Hucka, M., A. Finney, H. M. Sauro, et al. The systems biology markup
language (SBML): a medium for representation and exchange of biochem-
ical network models. Bioinformatics , 19(4):524-31, 2003.
79.
Kitano, H. Computational systems biology. Nature , 420(6912):206-10, 2002.
80.
Kitano, H. Systems biology: a brief overview. Science , 295(5560):1662-4,
2002.
81.
Segre, D., J. Zucker, J. Katz, et al. From annotated genomes to metabolic
flux models and kinetic parameter fitting. OMICS , 7(3):301-16, 2003.
82.
Burgard, A.P. and C. D. Maranas. Probing the performance limits of the
Escherichia coli metabolic network subject to gene additions or deletions.
Biotechnology and Bioengineering , 74:364-75, 2001.
83.
Segre, D., D. Vitkup and G. M. Church. Analysis of optimality in natural
and perturbed metabolic networks. Proceedings of the National Academy of
Sciences USA , 99(23):15112-17, 2002.
84.
Burgard, A.P., P. Pharkya and C. D. Maranas. Optknock: a bilevel program-
ming framework for identifying gene knockout strategies for microbial
strain optimization. Biotechnology and Bioengineering , 84:647-57, 2003.
85.
Edwards, J. S., R. U. Ibarra and B. Ø. Palsson. In silico predictions of
Escherichia coli metabolic capabilities are consistent with experimental data.
Nature Biotechnology , 19(2):125-30, 2001.
86.
Levchenko, A. Computational cell biology in the post-genomic era. Molecular
Biology Reports , 28(2):83-9, 2001.
87.
Lee, S. Y. Plastic bacteria? Progress and prospects for polyhydroxyalkanoate
production in bacteria. Trends in Biotechnology , 14: 431-8, 1996.
88.
Madison, L. L. and G. W. Huisman. Metabolic engineering of poly
(3-hydroxyalkanoates): from DNA to plastic. Microbiology and Molecular
Biology Reviews , 63(1):21-53, 1999.
Search WWH ::




Custom Search