Chemistry Reference
In-Depth Information
113. R. Foest, M. Schmidt, and K. Becker. Microplasmas, an emerging field of low-
temperature plasma science and technology. Int. J. Mass Spectrom. , 248(3):87-102,
2006.
114. K. Becker, K.-H. Schoenbach, and J. Eden. Microplasmas and applications. J. Phys.
D: Appl. Phys. , 39:R55-R70, 2006.
115. U. Kogelschatz. Applications of microplasmas and microreactor technology. Contrib.
Plasma Phys. , 47:80-88, 2007.
116. D. Staack, B. Farouk, A. Gutsol, and A. Fridman. Characterization of a dc atmo-
spheric pressure normal glow discharge. Plasma Sources Sci. Technol. , 14:700-711,
2005.
117. J.W. Frame and J.G. Eden. Planar microdischarge arrays. Electron. Lett. ,
34:1529-1531, 1998.
118. NationalResearchCouncil,ed. PlasmaScience,AdvancingKnowledgeintheNational
Interest . The National Academic Press, Washington, DC, ISBN 978-0-309-10943-7,
2010.
119. R. Foest, E. Kindel, H. Lange, A. Ohl, M. Stieber, and K.-D. Weltmann. RF capillary
jet—A tool for localized surface treatment. Contrib. Plasma Phys. , 47(1-2):119-128,
2007.
120. M. Laroussi and T. Akan. Arc-free atmospheric pressure cold plasma jets: A review.
Plasma Process. Polym. , 4:777-788, 2007.
121. E. Stoffels. Tissue processing with atmospheric plasmas. Contr. Plasma Phys. ,
47(1-2):40-48, 2007.
122. J. Schäfer, R. Foest, A. Quade, A. Ohl, and K.-D. Weltmann. Local deposition of SiO x
plasma polymer films by a miniaturized atmospheric pressure plasma jet (APPJ).
J. Phys. D: Appl. Phys. , 41(19):194010, 2008.
123. M. Teschke and J. Engeman. Low voltage APP-generation by piezo ceramics: A
new (r)evolutionary enabling technology. In Proceedings of the 18th International
Symposium on Plasma Chemistry , 26.-31.8.2007, Kyoto, Japan, 2007. On CD
contribution: 27A-a4.
124. M. Moselhy, I. Petzenhauser, K. Frank, and K.H. Schoenbach. Excimer emission
from microhollow cathode argon discharges. J. Phys. D: Appl. Phys. , 36:2922, 2003.
125. R. Foest, T. Bindemann, R. Brandenburg, E. Kindel, H. Lange, M. Stieber, and
K.-D. Weltmann. On the vacuum ultraviolet radiation of a miniaturized non-thermal
atmospheric pressure plasma jet. Plasma Process. Polym. , 4:S460-S464, 2007.
126. K.H. Schoenbach, A. El-Habachi, M.M. Moselhy, W. Shi, and R.H. Stark.
Microhollow cathode discharge excimer lamps. Phy. Plasmas , 7:2186, 2000.
127. M. Moselhy and K.H. Schoenbach. Excimer emission from microhollow cathode
argon discharges. J. Appl. Phys. , 95:1672, 2004.
128. L.E. Amorer. Unpubl. PhD thesis, Stevens Institue of Technology, Hoboken, NJ, 1999.
129. K. Becker, A. Koutsospyros, S.-M. Yin, C. Christodoulatos, N. Abramzon, J.C.
Joaquin, and G. Brelles-Marino. Environmental and biological applications of
microplasmas. Plasma Phys. Control. Fusion , 47:B513-B523, 2005.
130. J.G. Eden and S.J. Park. Microcavity plasma devices and arrays: A new realm
of plasma physics and photonic applications. Plasma Phys. Control. Fusion ,
47:B83-B92, 2005.
131. I.E. Kieft, B.N. van Berkel, E.R. Kieft, and E. Stoffels. Radicals of Plasma Needle
Detected with Fluorescent Probe . In R. d'Agostino, P. Favia, C. Oehr, and M.R.
Wertheimer, eds., Plasma Processes and Polymers , p.295. Wiley-VCH, Weinheim,
Germany, 2005.
Search WWH ::




Custom Search