Chemistry Reference
In-Depth Information
132. E. Stoffels, A.J. Flikweert, W.W. Stoffels, and G.M.W. Kroesen. Plasma nee-
dle: A non-destructive atmospheric plasma source for fine surface treatment of
(bio)materials. Plasma Sources Sci. Technol. , 11:383-388, 2002.
133. E. Stoffels. Atmospheric plasma: A universal tool for physicians? In R. Hippler,
H. Kersten, M. Schmidt, and K. Schoenbach, eds., Low Temperature Plasmas ,Vol.2,
2nd edn., p. 837. Wiley, Weinheim, Germany, 2008.
134. M. Schmidt, T. Föste, P. Michel, and V. Sapkin. Device for producing and investigating
an electron beam plasma discharge. Beitr. Plasma Phys. , 22:43-441, 1982.
135. D. Leonhardt, S.G. Walton, and R.F. Fernslet. Fundamentals and applications of
a plasma-processing system based on electron-beam ionization. Phys. Plasmas ,
14:057103, 2007.
136. S.G. Walton, E.H. Lock, and R.F. Fernsler. Plasma modification of solid and porous
polyethylene. Plasma Process. Polym. , 5:453-459, 2008.
137. K. Ostrikov and S. Xu. Plasma-Aided Nanofabrication, from Plasma Sources to
Nanoassembly . Wiley-VCH, Weinheim, Germany, 2007.
138. K. Dittmann, K. Matyash, S. Nemschokmichal, J. Meichsner, and R. Schneider.
Excitation mechanisms and sheath dynamics in capacitively coupled radio-
frequency oxygen Plasmas. Contrib. Plasma Phys. , 50(10):942-953, 2010, doi:
10.1002/ctpp.201000038.
139. J. Schulze, A. Derzsi, K. Dittmann, T. Hemke, J. Meichsner, and Z. Donko. Ionization
by drift and ambipolar electric fields in electronegative capacitive radio frequency
Plasmas. Phys. Rev. Lett. , 107:275001, 2011, doi: 10.1103/PhysRevLett.107.275001.
CHAPTER 4
1. A. Rutscher and H.-E. Wagner. The model of macroscopic kinetics in non-equilibrium
plasma chemical reactions I. General considerations and basic relations. Contrib.
Plasma Phys. , 25:337-350, 1985.
2. A. Rutscher and H.-E. Wagner. Chemical quasi-equilibria: A new concept in the
description of reactive plasmas. Plasma Sources Sci. Technol. , 2:279-288, 1993.
3. H.-E. Wagner. Reactive nonthermal plasmas—Chemical quasiequilibria, similarity
principles, and macroscopic kinetics. In R. Hippler, H. Kersten, M. Schmidt, and
K.-H. Schoenbach, eds., Low Temperature Plasmas—Fundamentals, Technologies
and Techniques , Vol. 1, 2nd edn., pp. 385-409. Wiley-VCH, Weinheim, Germany,
2008.
4. F. Miethke, H.-E. Wagner, A. Rutscher, and S. Gundermann. Simultaneous thermal
and plasma chemical activation of conversions in H 2 -I 2 -HI mixtures. J. Phys. Chem.
A , 103:2024-2030, 1999.
5. H. Jacobs, F. Miethke, A. Rutscher, and H.-E. Wagner. Reaction kinetics and chemical
quasi-equilibria of the ozone synthesis in oxygen DC discharges. Contrib. Plasma
Phys. , 36:471-486, 1996.
6. A. Sonnenfeld, H. Strobel, and H.-E. Wagner. Kinetics, macrokinetics and dissipa-
tivity scalar of the decomposition of CO2 in non-isothermal plasmas. J. Non-Equilib.
Thermodyn. , 23:105-134, 1998.
7. E. Warburg. Über chemische Reaktionen, welche durch die stille Entladung in
gasförmigen Körpern herbeigeführt werden. In Jahruch der Radioaktivität und
Elektronik , Vol. 6, pp. 181-229. Hirzel, Leipzig, Germany, 1909.
8. H. Becker. Wissenschaftliche Veröffentlichungen Chem. , Vol. 7. Siemens-Konzern,
1920.
Search WWH ::




Custom Search