Chemistry Reference
In-Depth Information
98. J. Pelletier. Distributed ECR plasma sources. In O. Popov, ed., High Density Plasma
Sources Design, Physics and Performance , p. 380. Noyes Publications, Park Ridge,
NJ, 1995.
99. J. Pelletier, A. Lacoste, Y. Arnal, T. Lagarde, T. Lincot, and D. Hertz. New trends
in DECR plasma technology: Applications to novel duplex treatments and process
combinations with extreme plasma specifications. Surf. Coat. Technol. , 139:222-232,
2001.
100. P. Supiot, C. Vivien, A. Granier, A. Bousquet, A. Mackova, D. Escaich, R. Clegereaux,
P. Raynaud, Z. Styhal, and J. Pavlik. Growth and modification of organosilicon films
in PECVD and remote afterglow reactors. Plasma Process. Polym. , 3:100-109, 2006.
101. R. Foest, E. Kindel, A. Ohl, M. Stieber, and K.-D. Weltmann. Non-thermal atmo-
spheric pressure discharges for surface modification. Plasma Phys. Contr. Fusion ,
47:B525-B536, 2005.
102. J.R. Roth, S. Nourgostar, and T.A. Bonds. The one atmosphere uniform glow
discharge plasma (OAUGDP)—A platform technology for the 21st century. IEEE
Trans. Plasma Sci. , 35:233-250, 2007.
103. A. Garscadden. Atmospheric pressure glow discharges. In R. Hippler, H. Kersten,
M. Schmidt, and K.-H. Schoenbach, eds., Low Temperature Plasmas ,Vo.2,
2nd edn., p. 411. Wiley-VCH, Weinheim, Germany, 2008.
104. U. Kogelschatz, Y.S. Akishev, and A.P. Napartovich. History of non-equilibrium air
discharges. In K.H. Becker, U. Kogelschatz, K.-H. Schoenbach, and R.J. Barker,
eds., Non-Equilibrium Air Plasmas at Atmospheric Pressure , pp. 17-75. IoP, Bristol,
U.K., 2005.
105. U. Kogelschatz and J. Salge. High pressure plasmas: Dielectric barrier and corona
discharges. In R. Hippler, H. Kersten, M. Schmidt, and K.-H. Schoenbach, eds., Low
Temperature Plasmas , Vol. 2, 2nd edn., p. 439. Wiley-VCH, Weinheim, Germany,
2008.
106. K. Becker and K.-H. Schoenbach. High-pressure microdischarges. In R. Hippler,
H. Kersten, M. Schmidt, and K.-H. Schoenbach, eds., Low Temperature Plasmas ,
Vol. 2, 2nd edn., p. 463. Wiley-VCH, Weinheim, Germany, 2008.
107. R.M. Sankaran and K. Giapis. Materials applications of high-pressure microplasmas.
In R. Hippler, H. Kersten, M. Schmidt, and K.-H. Schoenbach, eds., LowTemperature
Plasmas , Vol. 2, 2nd edn., p. 495. Wiley-VCH, Weinheim, Germany, 2008.
108. E. Kunhardt. Generation of large-volume, atmospheric-pressure, nonequilibrium
plasmas. IEEE Trans. Plasma Sci. , 28(1):189-200, 2000.
109. H.-E. Wagner, R. Brandenburg, K.V. Kozlov, A. Sonnenfeld, P. Michel, and J.F.
Behnke. The barrier discharge: Basic properties and applications to surface treatment.
Vacuum , 71:417-436, 2003.
110. S. Okazaki, M. Kogoma, M. Uehara, and Y. Kimura. Appearance of stable glow
discharge in air, argon, oxygen and nitrogen at atmospheric pressure using a 50 Hz
source. J. Phys. D: Appl. Phys. , 26:889-892, 1993.
111. U. Kogelschatz, Y.S. Akishev, K.H. Becker, E.E. Kunhardt, M. Kogoma, S. Kuo,
M. Laroussi, A.P. Napartovich, S. Okazaki, and K.-H. Schoenbach. DC and low
frequency air plasma sources. In K.H. Becker, U. Kogelschatz, K.-H. Schoenbach,
and R.J. Barker, eds., Non-Equilibrium Air Plasmas at Atmospheric Pressure ,
pp. 276-361. IoP, Bristol, U.K., 2005.
112. J. Eden, S.-J. Park, and K.-S. Kim. Arrays of nonequilibrium plasmas confined to
microcavities: An emerging frontier in plasma science and its applications. Plasma
Sources Sci. Technol. , 15:S67-S73, 2006.
Search WWH ::




Custom Search