Chemistry Reference
In-Depth Information
Streptomyces dinuclear aminopeptidase: Peptide hydrolysis and 710 10 -fold rate enhance-
ment of phosphodiester hydrolysis. J. Inorg. Biochem. , 104 , 19-29.
53. (a) Park, H.I. and Ming, L.-J. (1999) A 10 10 rate enhancement of phosphodiester hydrolysis by
a dinuclear aminopeptidase—Transition state analogues as substrates? Angew. Chem. Int. Ed. ,
38 , 2914-2916; (b) Ercan, A. Park, H.I., and Ming, L.-J. (2000) Enormous enhancement of the
hydrolyses of phosphoesters by dinuclear centers: Streptomyces aminopeptidase as a “natural
model system”. Chem. Commun. , 2501-2502; (c) Ercan, A. Park, H.I., and Ming,
L.-J. (2006) A 'moonlighting' di-zinc aminopeptidase from Streptomyces griseus: Mecha-
nisms for peptide hydrolysis and the 410 10 -fold acceleration of the alternative phospho-
diester hydrolysis. Biochemistry , 45 , 13779-13793.
54. da Silva, G.F.Z. and Ming, L.-J. (2005) Catechol oxidase activity of di-Cu -substituted
aminopeptidase from Streptomyces griseus . J. Am. Chem. Soc. , 127 , 16380-16381.
55. Valentine, J.S., Wertz, D.L., Lyons, T.J. et al. (1998) The dark side of dioxygen biochemistry.
Curr. Opp. Chem. Biol. , 2 , 253-262.
56. Strange, R.W., Antonyuk, S.V., Hough, M.A. et al. (2006) Variable metallation of human
superoxide dismutase: atomic resolution crystal structures of Cu-Zn, Zn-Zn and as-isolated
wild-type enzymes. J. Mol. Biol. , 356 , 1152-1162.
57. Valentine, J.S. (1994) Chapter 5, Dioxygen reactions, in Bioionorganic Chemistry (eds I.
Bertini, H. Gray, S. Lippard, and J.S. Valentine), University Science Books, Mill Valley.
58. Leitch, J.M., Yick, P.J., and Culotta, V.C. (2009) The right to choose: Multiple pathways for
activating copper,zinc superoxide dismutase. J. Biol. Chem. , 284 , 24679-24683.
59. Furukawa, Y. and O'Halloran, T.V. (2005) Complete loss of post-translational modifications
triggers fibrilar aggregation of SOD1 in the familial form of amyotrophic lateral sclerosis.
J. Biol. Chem. , 280 , 17266-17274.
60. Furukawa, Y., Fu, R., Deng, H.-X. et al. (2006) Disulfide cross-linked protein represents a
significant fraction of ALS-associated Cu,Zn-superoxide dismutase aggregates in spinal cords
of model mice. Proc. Natl Acad. Sci. USA , 103 , 7148-7153.
61. Cao, X., Antonyuk, S.V., Seetharaman, S.V. et al. (2008) Structures of the G85R variant of
SOD1 in familial amyotrophic lateral sclerosis. J. Biol. Chem. , 283 , 16169-16177.
62. Lynch, S. and Colon, W. (2006) Dominant role of copper in the kinetic stability of Cu/Zn
superoxide dismutase. Biochem. Biophys. Res. Comm. , 340 , 457-461.
63. Assfalg, M., Banci, L., Bertini, I. et al. (2003) Superoxide dismutase folding/unfolding path-
way: role of the metal ions in modulating structural and dynamic features. J. Mol. Biol. , 330 ,
145-158.
64. Libralesso, E., Nerinovski, K., Parigi, G., and Turano, P. (2005) 1 H nuclear magnetic relaxa-
tion dispersion of Cu,Zn- superoxide dismutase in the native and guanidinium-induced
unfolded forms. Biochem. Biophys. Res. Comm. , 328 , 633-639.
65. Forman, H.J. and Fridovic, I. (1973) On the stability of bovine superoxide dismutase-the
effects of metals. J. Biol. Chem. , 248 , 2645-2649.
66. Roe, J.A., Butler, A., Scholler, D.M. et al. (1988) Differential scanning calorimetry of Cu,
Zn-superoxide dismutase, the apoprotein, and its zinc-substituted derivatives. Biochemistry ,
27 , 950-958.
67. Eakin, C.M., Knight, J.D., Morgan, C.J. et al. (2002) Formation of copper specific binding site
in non-native states of beta-2-macroglobulin. Biochemistry , 41 , 10646-10656.
68. Ming, L.-J. (2010) Metallopeptides—from drug discovery to catalysis. J. Chin. Chem. Soc , 57 ,
285-299.
69. (a) Kozłowski, H., Bal, W., Dyba, M., and Kowalik-Jankowska, T. (1999) Specific structure-
stability relations in metallopeptides. Coord. Chem. Rev. , 184 , 319-346; (b) Sovago, I. and
Ä sz, K. (2006) Metal ion selectivity of oligopeptides. Dalton Trans. , 2006 , 3841-3854;
(c) Migliorini, C., Porciatti, E., Luczkowski, M., and Valensin, D. (2012) Structural
Search WWH ::




Custom Search