Chemistry Reference
In-Depth Information
characterization of Cu ,Ni and Zn binding sites of model peptides associated with neu-
rodegenerative diseases. Coord. Chem. Rev. , 256 , 352-368.
70. Bataille, M., Formicka-Kozlowska, G., Kozlowski, H. et al. (1984) The L-proline residue as a
'break-point' in the co-ordination of metal-peptide systems. J. Chem. Soc. Chem. Commun. ,
1984 , 231-232.
71. (a) Chou, P.Y. and Fasman, G.D. (1977) b-turns in proteins. J. Mol. Biol. , 115 , 135-175;
(b) Chou, P.Y. and Fasman, G.D. (1979) Prediction of beta-turns. Biophys. J. , 26 , 367-383;
(c) Fu, H., Grimsley, G.R., Razvi, A. et al. (2009) Increasing protein stability by improving
beta-turns. Prot. Struct. Funct. Bioinform. , 77 , 491-498; (d) Trevino, S.R., Schaefer, S.,
Scholtz, J.M., and Pace, C.N. (2007) Increasing protein conformational stability by optimizing
beta-turn sequence. J. Mol. Biol. , 373 , 211-218; (e) Bornot, A. and de Brevern, A.G. (2006)
Protein beta-turn assignments. Bioinformation , 1 , 153-155; (f)Fuchs, P.F.J. and Alix, A.J.P.
(2005) High accuracy prediction of beta-turns and their types using propensities and multiple
alignments. Prot. Struct. Funct. Bioinform. , 59 , 828-839; (g) Fuller, A.A., Du, D., Liu, F.
et al. (2009) Evaluating beta-turn mimics as beta-sheet folding nucleators. Proc. Natl Acad.
Sci. USA , 106 , 11067-11072.
72. Chou, P.Y. and Fasman, G.D. (1974) Conformational parameters for amino acids in helical,
b-sheet, and random coil regions calculated from proteins. Biochemistry , 13 , 211-222.
73. Tyndall, J.D.A., Pfeiffer, B., Abbenante, G., and Fairlie, D.P. (2005) Over one hundred
peptide-activated g protein-coupled receptors recognize ligands with turn structure. Chem.
Rev. , 105 , 793-826.
74. Whitby, L.R., Ando, Y., Setola, V. et al. (2011) Design, synthesis, and validation of a b-turn
mimetic library targeting protein-protein and peptide-receptor interactions. J. Am. Chem.
Soc. , 133 , 10184-10194.
75. Ming, L.-J. (2003) Structure and function of metalloantibiotics. Med. Res. Rev. , 23 , 697-762.
76. Ming, L.-J. and Epperson, J.D. (2002) Metal binding and structure-activity relationship of the
metalloantibiotic peptide bacitracin. J. Inorg. Biochem , 91 , 46-58.
77. Umezawa, H., Maeda, K., Takeuchi, T., and Okami, Y. (1966) New antibiotics, bleomycin A
and B. J. Antibiot. , 19 , 200-209.
78. Wei, X. and Ming, L.-J. (1998) NMR studies of metal complexes and DNA binding of the
quinone-containing antibiotic streptonigrin. J. Chem. Soc. Dalton Trans. , 1998 , 2793-2798.
79. Chiu, Y. and Lipscomb, W.N. (1975) Molecular and crystal structure of streptonigrin. J. Am.
Chem. Soc. , 97 , 2525-2530.
80. Umezawa, H., Maeda, K., Takeuchi, T., and Okami, Y. (1966) New antibiotics, bleomycin A
and B. J. Antibiot. , 19 , 200-209.
81. Umezawa, H. and Takita, T. (1980) The bleomycins: Antitumor copper-binding antibiotics.
Struct. Bond. , 40 , 73-99.
82. (a) Takeshita, M. Horwitz, S.B., and Grollman, A.P. (1974) Bleomycin, an inhibitor of vac-
cinia virus replication. Virology , 60 , 455-456; (b) Takeshita, M., Grollman, A.P., and Horwitz,
S.B. (1976) Effect of ATP and other nucleotides on the bleomycin-induced degradation of
vaccinia virus DNA. Virology , 69 , 453-463; (c) Takeshita, M., Horwitz, S.B., and Grollman,
A.P. (1977) Mechanism of the antiviral action of bleomycin. Ann. N.Y. Acad. Sci. , 284 , 367-
374.
83. Lazo, J.S., Sebti, S.M., and Schellens, J.H. (1996) Bleomycin, cancer chemother. Biol. Resp.
Modif. , 16 , 39-47.
84. (a) Burger, R.M. (2000) Nature of activated bleomycin. Struct. Bond. , 97 , 287-303; (b) Bur-
ger, R.M. (1998) Cleavage of nucleic acids by bleomycin. Chem. Rev. , 98 , 1153-1170;
(c) Claussen, C.A. and Long, E.C. (1999) Nucleic acid recognition by metal complexes of
bleomycin. Chem. Rev. , 99 , 2797-2816; (d) Boger, D.L. and Cai, H. (1999) Bleomycin: syn-
thetic and mechanistic studies. Angew. Chem. Int. Ed. , 38 , 449-476; (e) Stabbe, J. and
Search WWH ::




Custom Search