Chemistry Reference
In-Depth Information
35. Kuboniwa, H., Tjandra, N., Grzesiek, S. et al. (1995) Solution structure of calcium-free cal-
modulin. Nat. Struct. Biol. , 2 , 768-776.
36. Wilson, M.A. and Brunger, A.T. (2000) The 1.0 A crystal structure of Ca -bound calmodu-
lin: an analysis of disorder and implications for functionally relevant plasticity. J. Mol. Biol. ,
301 , 1237-1256.
37. Chen, B., Lowry, D.F., Mayer, M.U., and Squier, T.C. (2008) Helix A stabilization precedes
amino terminal lobe activation upon calcium binding to calmodulin. Biochemistry , 47 ,
9220-9226.
38. Tadross, M.R., Dick, I.E., and Yue, D.T. (2008) Mechanism of local and global Ca sensing
by calmodulin in complex with a Ca channel. Cell , 133 , 1228-1240.
39. Halling, D.B., Georgiou, D.K., Black, D.J. et al. (2009) Determinants in CaV1 channels that
regulate the Ca sensitivity of bound calmodulin. J. Biol. Chem. , 284 , 20041-20051.
40. Finn, B.E. and Forsen, S. (1995) The evolving model of calmodulin structure, function and
activation. Structure , 3 , 7-11.
41. Zuhlke, R.D., Pitt, G.S., Richard, K.D. et al. (1999) Calmodulin supports both inactivation and
facilitation of L-type calcium channels. Nature , 399 , 159-162.
42. Kobrinsky, E., Darrell, E.S., Abernethy, R., and Soldatov, N.M. (2003) Voltage-gated mobility
of the Ca channel cytoplasmic tails and its regulatory role. J. Biol. Chem. , 278 , 5021-5028.
43. Vendrell, J., Querol, E., and Aviles, F.X. (2000) Metallocarboxypeptidases and their protein inhib-
itors. Structure, function and biomedical properties. Biochem. Biophys. Acta , 1477 , 284-298.
44. Kilshtain-Vardi, A., Glick, M., Greenblatt, H.M. et al. (2003) Refined structure of bovine
carboxypeptidase A at 1.25 A resolution. Acta Crystallogr. D , 59 , 323-333.
45. Rees, D.C. and Lipscomb, W.N. (1982) Refined crystal structure of the potato inhibitor com-
plex of carboxypeptidase A at 2.5 A resolution. J. Mol. Biol. , 160 , 475-498.
46. (a) Burley, S.K., David, P.R., Taylor, A., and Lipscomb, W.N. (1990) Leucine Aminopepti-
dase: bestatin inhibition and a model for enzyme catalyzed peptide hydrolysis. Proc. Natl
Acad. Sci. USA , 87 , 6878-6882; (b) Burley, S.K., David, P.R., Sweet, R.M. et al. (1992) Struc-
ture determination and refinement of bovine lens leucine aminopeptidase and its complex with
bestatin. J. Mol. Biol. , 224 , 113-140; (c) Strater, N. and Lipscomb, W.N. (1995) A bicarbonate
ion as a general base in the mechanism of peptide hydrolysis by dizinc aminopeptidase. Bio-
chemistry , 34 , 9200-9210; (d) Kim, H. and Lipscomb, W.N. (1994) Structure and mechanism
of bovine lens leucine aminopeptidase. Adv. Enzymol. , 68 , 153-213.
47. Chevrier, B., Schalk, C., D'Orchymont, H. et al. (1994) Crystal structure of Aeromonas
proteolytica aminopeptidase: a prototypical member of the co-catalytic zinc enzyme family.
Structure , 2 , 283-291.
48. Greenblatt, H.M., Maras, O.A., Spungin-Bialik, A. et al. (1997) Streptomyces griseus
aminopeptidase: X-ray crystallographic structure at 1.75 A
resolution. J. Mol. Biol. , 265 ,
620-636.
49. Prescott, J.M., Wagner, F.W., Holmquist, B., and Vallee, B.L. (1985) Spectral and kinetic
studies of metal-substituted Aeromonas aminopeptidase: nonidentical, interacting metal-
binding sites. Biochemistry , 24 , 5350-5356.
50. Lowther, W.T. and Matthews, B.W. (2002) Metalloaminopeptidases: Common Functional
Themes in Disparate Structural Surrounding. Chem. Rev. , 102 , 4581-4608.
51. (a) Van Wart, H.E. and Lin, S.H. (1981) Metal binding stoichiometry and metal ion modula-
tion of the activity of porcine kidney leucine aminopeptidase. Biochemistry , 20 , 5682-5689;
(b) Vallee, B.L. and Auld, D.S. (1993) Cocatalytic zinc motifs in enzyme catalysis. Proc. Natl
Acad. Sci. USA , 90 , 2715-2718.
52. (a) Lin, L.Y., Park, H.I., and Ming, L.-J. (1997) Metal-binding and active-site structure of
di-zinc Streptomyces griseus aminopeptidase. J. Biol. Inorg. Chem. , 2 , 744-749; (b) Ercan,
A., Tay, W.M., Grossman, S.H., and Ming, L.-J. (2010) Mechanistic role of each metal ion in
Search WWH ::




Custom Search