Chemistry Reference
In-Depth Information
18. Chrysina, E.D., Brew, K., and Acharya, R. (2000) Crystal structures of apo-and holo-bovine
a-lactalbumin at 2.2 A resolution reveal an effect of calcium on inter-lobe interaction. J. Biol.
Chem. , 275 , 3701-37029.
19. Halskau, O., Perez-Jimenez, R., Ibarra-Molero, B. et al. (2008) Large scale modulation of
thermodynamic protein folding barriers linked to elecrostatics. Proc. Natl Acad. Sci. USA ,
105 , 8625-8630.
20. Fischer, E. and Davie, E.W. (1998) Recent excitement regarding metallothionein. Proc. Natl
Acad. Sci USA , 95 (7), 3333-3334.
21. Henkel, G. and Krebs, B. (2004) Metallothioneins: Zinc, cadmium, mercury and copper
thiolates and selenolates mimicking protein active site features-structural aspects and biologi-
cal implications. Chem. Rev. , 104 (2), 801-824.
22. Ambjorn, M., Asmussen, J.W., Lindstam, M. et al. (2008) Metallothionein and a peptide
modeled after metallothionein, EmtinB, induce neuronal differentiation and survival
through binding to receptors of the low-density lipoprotein receptor family. J. Neuro-
chem. , 104 , 21-37.
23. Maret, W. and Vallee, B.L. (1998) Thiolate ligands in metallothionein confer redox activity on
zinc clusters. Proc. Natl Acad. Sci. USA , 95 , 3478-3482.
24. Duncan, K.R. and Stillman, M.J. (2006) Metal dependent protein folding: metallation of met-
allothionein. J. Inorg. Biochem. , 100 , 2101-2107.
25. Maret, W. (2006) Zinc coordination environments in proteins as redox sensors and signal
transducers. Antioxid. Redox Signal. , 8 , 1419-1441.
26. Takeda, E., Taketani, Y., Sawada, N. et al. (2004) The regulation and function of phosphate in
the human body. Biofactors , 21 , 345-355.
27. Braun, W., Vasak, M., Robbins, A.H. et al. (1992) Comparison of the NMR solution structure
and the x-ray crystal structure of rat metallothionein-2. Proc. Natl Acad. Sci. USA , 89 ,
10124-10128.
28. (a) Green, A.R., Presta, A., Gasyna, Z., and Stillman, M.J. (1994) Luminescent probe of
copper-thiolate cluster formation within mammalian metallothionein. Inorg. Chem. , 33 ,
4159-4618; (b) Stillman, M.J., Presta, A., Gui, Z., and Jiang, D.-T. (2004) Spectroscopic
Studies of copper, silver and gold-metallotheionins. Met. Based Drugs , 1 , 375-394.
29. (a) Otvos, J.D. and Armitage, I.M. (1979) Cadmium-113 NMR of metallothionein: direct evi-
dence for the existence of polynuclear metal binding sites. J. Am. Chem. Soc. , 101 ,
7734-7736; (b) Boulanger, Y., Armitage, I.M., Miklossy, K.A., and Winge, D.R. (1982) 113 Cd
NMR study of a metallothionein fragment. Evidence for a two-domain structure. J. Biol.
Chem. , 257 , 3717-3719; (c) Vasak, M., Hawkes, G.E., Nicholson, J.K., and Sadler, P.J. (2005)
Cadmium-113 NMR studies of reconstituted seven-cadmium metallothionein: evidence for
structural flexibility. Biochemistry , 24 , 740-747; (d) Digilio, G., Bracco, C., Vergani, L. et al.
(2009) The cadmium binding domains in the metallothionein isoform Cd7-MT10 from
Mytilus galloprovincialis revealed by NMR spectroscopy. J Biol. Inorg. Chem. , 14 , 167-178.
30. Rigby, K.E., Chan, J., Mackie, J., and Stillman, J.M. (2006) Molecular dynamics study on the
folding and metallation of the individual domains of metallothionein. Proteins , 62 , 159-172.
31. Bell, S.G., and Valee, B.L. (2009) The metallathionein/thionein system an oxidoreductive
metabolic zinc link. ChemBioChem , 10 , 55-62.
32. Vasak, M., and Kagi, H.J. (1981) Metal thiolate clusters in cobalt(II)-metallothionein. Proc.
Natl Acad. Sci. USA , 78 , 6709-6713.
33. Parraga, G., Horvath, S.J., Eisen, A. et al. (1988) Zn-dependent structure of a single-finger
domain of yeast ADR1. Science , 241 (4872), 1489-1492.
34. Chen, B., Lowry, D.F., Mayer, M.U., and Squier, T.C. (2008) Helix A stabilization precedes
amino terminal lobe activation upon calcium binding to calmodulin. Biochemistry , 47 ,
9220-9226.
Search WWH ::




Custom Search