Biomedical Engineering Reference
In-Depth Information
Liu, Y., Ye, H., Satkunendrarajah, K., Yao, G.S., Bayon, Y., Fehlings, M.G., 2013. A self-assembling peptide
reduces glial scarring, attenuates post-traumatic inlammation and promotes neurological recovery following
spinal cord injury. Acta Biomater 9, 8075-8088 .
Lock, L.L., Lacomb, M., Schwarz, K., Cheetham, A.G., Lin, Y.-A., Zhang, P., Cui, H., 2013. Self-assembly of
natural and synthetic drug amphiphiles into discrete supramolecular nanostructures. Faraday discussions 166,
285-331 .
Ma, Z., Kotaki, M., Inai, R., Ramakrishna, S., 2005. Potential of nanoiber matrix as tissue-engineering scaffolds.
Tissue engineering 11, 101-109 .
Malarkey, E.B., Fisher, K.A., Bekyarova, E., Liu, W., Haddon, R.C., Parpura, V., 2009. Conductive single-walled
carbon nanotube substrates modulate neuronal growth. Nano letters 9, 264-268 .
Marquardt, L.M., Sakiyama-Elbert, S.E., 2013. Engineering peripheral nerve repair. Current opinion in
biotechnology 24, 887-892 .
Matson, J.B., Stupp, S.I., 2011. Self-assembling peptide scaffolds for regenerative medicine. Chemical
communications (Cambridge, England) 48, 26-33 .
Matsumoto, K., Sato, C., Naka, Y., Whitby, R., Shimizu, N., 2010. Stimulation of neuronal neurite outgrowth using
functionalized carbon nanotubes. Nanotechnology 21, 115101 .
Maude, S., Ingham, E., Aggeli, A., 2013. Biomimetic self-assembling peptides as scaffolds for soft tissue
engineering. Nanomedicine 8, 823-847 .
Melchels, F.P.W., Domingos, M.A.N., klein, T.J., Malda, J., Bartolo, P.J., Hutmacher, D.W., 2012. Additive
manufacturing of tissues and organs. Progress in Polymer Science 37, 1079-1104 .
Melissinaki, V., Gill, A.A., Ortega, I., Vamvakaki, M., Ranella, A., Fotakis, C., Farsari, M. & Claeyssens, F. Direct
laser writing of polylactide 3D scaffolds for neural tissue engineering applications. 2011. IEEE, 1-1.
Merzlyak, A., Indrakanti, S., Lee, S.-W., 2009. Genetically engineered nanoiber-like viruses for tissue regenerating
materials. Nano letters 9, 846-852 .
Ni, Y., Hu, I., Malarkey, E.B., Zhao, B., Montana, V., Haddon, R.C., Parpura, V., 2005. Chemically functionalized
water soluble single-walled carbon nanotubes modulate neurite outgrowth. Journal of Nanoscience and
Nanotechnology 5, 1707-1712 .
Owens, C.M., Marga, F., Forgacs, G., Heesch, C.M., 2013. Biofabrication and testing of a fully cellular nerve graft.
Biofabrication, 5 .
Ozbolat, I.T., Yu, Y., 2013. Bioprinting toward organ fabrication: challenges and future trends. IEEE transactions
on bio-medical engineering 60, 691-699 .
Panseri, S., Cunha, C., Lowery, J., Del Carro, U., Taraballi, F., Amadio, S., Vescovi, A., Gelain, F., 2008.
Electrospun micro- and nanoiber tubes for functional nervous regeneration in sciatic nerve transections. BMC
biotechnology 8, 39-139 .
Park, H.-B., Nam, H.-G., Oh, H.-G., Kim, J.-H., Kim, C.-M., Song, K.-S., Jhee, K.-H., 2013a. Effect of graphene
on growth of neuroblastoma cells. Journal of Microbiology and Biotechnology 23, 274-277 .
Park, S.Y., Choi, D.S., Jin, H.J., Park, J., Byun, K.-E., Lee, K.-B., Hong, S., 2011. Polarization-controlled
differentiation of human neural stem cells using synergistic cues from the patterns of carbon nanotube
monolayer coating. ACS nano 5, 4704-4711 .
Park, S.Y., Kang, B.-S., Hong, S., 2013b. Improved neural differentiation of human mesenchymal stem cells
interfaced with carbon nanotube scaffolds. Nanomedicine 8, 715-723 .
Peng, X.H., Wong, S.S., 2009. Functional Covalent Chemistry of Carbon Nanotube Surfaces. Advanced materials
21, 625-642 .
Rao, C.N.R., Sood, A.K., Subrahmanyam, K.S., Govindaraj, A., 2009. Graphene: the new two-dimensional
nanomaterial. Angewandte Chemie (International ed. in English) 48, 7752-7777 .
Saito, N., Kato, H., Taruta, S., Endo, M., Usui, Y., Aoki, K., Narita, N., Shimizu, M., Hara, K., Ogiwara, N.,
Nakamura, K., Ishigaki, N., 2009. Carbon nanotubes: biomaterial applications. Chemical Society reviews 38,
1897-1903 .
Search WWH ::




Custom Search