Biomedical Engineering Reference
In-Depth Information
Saracino, G.A.A., Cigognini, D., Silva, D., Caprini, A., Gelain, F., 2013. Nanomaterials design and tests for neural
tissue engineering. Chemical Society reviews 42, 225-262 .
Schmidt, C.E., Leach, J.B., 2003. Neural tissue engineering: strategies for repair and regeneration. Annual review
of biomedical engineering 5, 293-347 .
Shepherd, J.N.H., Parker, S.T., Shepherd, R.F., Gillette, M.U., Lewis, J.A., Nuzzo, R.G., 2011. 3D Microperiodic
Hydrogel Scaffolds for Robust Neuronal Cultures. Advanced functional materials 21, 47-54 .
Shoichet, M., Schmidt, H.C., 2001. Neural tissue engineering. Biomaterials 22, 1015-1193 .
Shoichet, M.S., Tate, C.C., Douglas Baumann, M., Laplaca, M.C., 2008. Strategies for Regeneration and Repair
in the Injured Central Nervous System. In: Reichert, W.M. (Ed.), Indwelling Neural Implants: Strategies for
Contending with the In Vivo Environment. CRC Press, Boca Raton .
Sill, T.J., Von Recum, H.A., 2008. Electrospinning: applications in drug delivery and tissue engineering. Biomaterials
29, 1989-2006 .
Smith, K.H., Tejeda-Montes, E., Poch, M., Mata, A., 2011. Integrating top-down and self-assembly in the
fabrication of peptide and protein-based biomedical materials. Chemical Society reviews 40, 4563 .
Stephanopoulos, N., Ortony, J.H., Stupp, S.I., 2013. Self-assembly for the synthesis of functional biomaterials.
Acta materialia 61, 912-930 .
Subramanian, A., Krishnan, U.M., Sethuraman, S., 2009. Development of biomaterial scaffold for nerve tissue
engineering: Biomaterial mediated neural regeneration. Journal of biomedical science 16, 108-1108 .
Sun, L., Zhang, L., Hemraz, U.D., Fenniri, H., Webster, T.J., 2012. Bioactive rosette nanotube-hydroxyapatite
nanocomposites improve osteoblast functions. Tissue engineering. Part A 18, 1741-1750 .
Tang, M., Song, Q., Li, N., Jiang, Z., Huang, R., Cheng, G., 2013. Enhancement of electrical signaling in neural
networks on graphene ilms. Biomaterials 34, 6402-6411 .
Theron, S.A., Zussman, E., Yarin, A.L., 2004. Experimental investigation of the governing parameters in the
electrospinning of polymer solutions. Polymer 45, 2017-2030 .
Tran, P.A., Zhang, L., Webster, T.J., 2009. Carbon nanoibers and carbon nanotubes in regenerative medicine.
Advanced Drug Delivery Reviews 61, 1097-1114 .
Tysseling, V.M., Sahni, V., Niece, K.L., Birch, D., Czeisler, C., Fehlings, M.G., Stupp, S.I., Kessler, J.A., 2008.
Self-Assembling Nanoibers Inhibit Glial Scar Formation and Promote Axon Elongation after Spinal Cord
Injury. Journal of Neuroscience 28, 3814-3823 .
Tysseling, V.M., Sahni, V., Pashuck, E.T., Birch, D., Hebert, A., Czeisler, C., Stupp, S.I., Kessler, J.A., 2010.
Self-assembling peptide amphiphile promotes plasticity of serotonergic ibers following spinal cord injury.
Journal of Neuroscience Research 88, 3161-3170 .
Vasita, R., Katti, D.S., 2006. Nanoibers and their applications in tissue engineering. International journal of
nanomedicine 1, 15-30 .
Vasita, R., Shanmugam, K., Katti, D.S., 2008. Improved biomaterials for tissue engineering applications: Surface
modiication of polymers. Current topics in medicinal chemistry 8, 341-353 .
Wang, C.Y., Zhang, K.H., Fan, C.Y., Mo, X.M., Ruan, H.J., Li, F.F., 2011a. Aligned natural-synthetic polyblend
nanoibers for peripheral nerve regeneration. ACTA Biomaterialia 7, 634-643 .
Wang, Y., Wang, J., Li, Z., Li, J., Lin, Y., 2011b. Graphene and graphene oxide: biofunctionalization and applications
in biotechnology. Trends in Biotechnology 29, 205-212 .
Wei, G.-J., Yao, M., Wang, Y.-S., Zhou, C.-W., Wan, D.-Y., Lei, P.-Z., Wen, J., Lei, H.-W., Dong, D.-M., 2013.
Promotion of peripheral nerve regeneration of a peptide compound hydrogel scaffold. International journal of
nanomedicine 8, 3217-3225 .
Weng, B., Liu, X., Shepherd, R., Wallace, G.G., 2012. Inkjet printed polypyrrole/collagen scaffold: A combination
of spatial control and electrical stimulation of PC12 cells. Synthetic Metals 162, 1375-1380 .
Xie, J., Macewan, M.R., Li, X., Sakiyama-Elbert, S.E., Xia, Y., 2009a. Neurite Outgrowth on Nanoiber Scaffolds
with Different Orders, Structures, and Surface Properties. ACS Nano 3, 1151-1159 .
Search WWH ::




Custom Search