Biomedical Engineering Reference
In-Depth Information
Hauser, C.A.E., Zhang, S., 2010. Designer self-assembling peptide nanoiber biological materials. Chemical
Society reviews 39, 2780-3279 .
Hirsch, A., 2002. Functionalization of single-walled carbon nanotubes. Angewandte Chemie (International ed. in
English) 41, 1853-1859 .
Hosseinkhani, H., Hong, P.-D., Yu, D.-S., 2013. Self-assembled proteins and peptides for regenerative medicine.
Chemical reviews 113, 4837-4861 .
Hu, H., Ni, Y., Montana, V., Haddon, R.C., Parpura, V., 2004. Chemically Functionalized Carbon Nanotubes as
Substrates for Neuronal Growth. Nano Letters 4, 507-511 .
Huang, J., Lu, L., Zhang, J., Hu, X., Zhang, Y., Liang, W., Wu, S., Luo, Z., 2012. Electrical stimulation to
conductive scaffold promotes axonal regeneration and remyelination in a rat model of large nerve defect. PloS
one 7, e39526 .
Iwasaki, M., Wilcox, J.T., Nishimura, Y., Zweckberger, K., Suzuki, H., Wang, J., Liu, Y., Karadimas, S.K., Fehlings,
M.G., 2014. Synergistic effects of self-assembling peptide and neural stem/progenitor cells to promote tissue
repair and forelimb functional recovery in cervical spinal cord injury. Biomaterials 35, 2617 .
Jan, E., Kotov, N.A., 2007. Successful differentiation of mouse neural stem cells on layer-by-layer assembled
single-walled carbon nanotube composite. Nano letters 7, 1123-1128 .
Jin, L., Feng, Z.Q., Zhu, M.L., Wang, T., Leach, M.K., Jiang, Q., 2012. A Novel Fluffy Conductive Polypyrrole
Nano-Layer Coated PLLA Fibrous Scaffold for Nerve Tissue Engineering. Journal of Biomedical
Nanotechnology 8, 779-785 .
Katsnelson, M.I., 2007. Graphene: Carbon in two dimensions. Materials Today 10, 20-27 .
Keefer, E.W., Botterman, B.R., Romero, M.I., Rossi, A.F., Gross, G.W., 2008. Carbon nanotube coating improves
neuronal recordings. Nature nanotechnology 3, 434-439 .
Keun Kwon, I., Kidoaki, S., Matsuda, T., 2005. Electrospun nano- to microiber fabrics made of biodegradable
copolyesters: structural characteristics, mechanical properties and cell adhesion potential. Biomaterials 26,
3929-3939 .
Kim, Y.G., Lee, Y.I., Kim, J.W., Pyeon, H.J., Hyun, J.K., Hwang, J.-Y., Choi, S.-J., Lee, J.-Y., Deák, F., Kim,
H.-W., 2014. Differential stimulation of neurotrophin release by the biocompatible nano-material (carbon
nanotube) in primary cultured neurons. Journal of biomaterials applications 28, 790 .
Ko, S.H., Su, M., Zhang, C., Ribbe, A.E., Jiang, W., Mao, C., 2010. Synergistic self-assembly of RNA and DNA
molecules. Nature chemistry 2, 1050-1055 .
Kokai, L.E., Bourbeau, D., Weber, D., Mcatee, J., Marra, K.G., 2011. Sustained Growth Factor Delivery
Promotes Axonal Regeneration in Long Gap Peripheral Nerve Repair. Tissue engineering. Part A 17,
1263-1275 .
Kumbar, S.G., James, R., Nukavarapu, S.P., Laurencin, C.T., 2008. Electrospun nanoiber scaffolds: engineering
soft tissues. Biomedical Materials, 3 .
Lee, A.C., Yu, V.M., Lowe, J.B., Brenner, M.J., Hunter, D.A., Mackinnon, S.E., Sakiyama-Elbert, S.E., 2003.
Controlled release of nerve growth factor enhances sciatic nerve regeneration. Experimental Neurology 184,
295-303 .
Lee, J.Y., Bashur, C.A., Goldstein, A.S., Schmidt, C.E., 2009. Polypyrrole-coated electrospun PLGA nanoibers
for neural tissue applications. Biomaterials 30, 4325-4335 .
Lee, W., Lee, Y.-B., Polio, S., Dai, G., Menon, L., Carroll, R.S., Yoo, S.-S., 2010. Bio-printing of collagen and
VEGF-releasing ibrin gel scaffolds for neural stem cell culture. Experimental Neurology 223, 645-652 .
Li, N., Cheng, G., Zhang, Q., Gao, S., Song, Q., Huang, R., Wang, L., Liu, L., Dai, J., Tang, M., 2013.
Three-dimensional graphene foam as a biocompatible and conductive scaffold for neural stem cells. Scientiic
reports 3, 1604 .
Liang, Y.-X., Cheung, S.W.H., Chan, K.C.W., Wu, E.X., Tay, D.K.C., Ellis-Behnke, R.G., 2011. CNS regeneration
after chronic injury using a self-assembled nanomaterial and MEMRI for real-time in vivo monitoring.
Nanomedicine : nanotechnology, biology, and medicine 7, 351-359 .
Search WWH ::




Custom Search