Environmental Engineering Reference
In-Depth Information
482
.
H 2 CCCCH + H 2 → C 2 H 2 + C 2 H 3
5.01E+10
0.0
20000
495
.
C 3 H 6 + CH 3 → C 3 H 5 + CH 4
2.21E+00
3.5
5675
513
.
CH 2 + C 2 H 4 → C 3 H 6
9.03E+13
0.0
0
514
.
C 3 H 4 + H → C 3 H 5
1.20E+11
0.7
3007
520
.
C 3 H 5 + C 2 H 3 → C 3 H 4 + C 2 H 4
2.41E+12
0.0
0
521
.
C 3 H 5 + C 2 H 5 → C 3 H 4 + C 2 H 6
9.64E+11
0.0
-131
523
.
C 2 H 4 + HCH → C 3 H 5 + H
3.19E+12
0.0
5285.
4
524
C 3 H 4 → C 3 H 4 P
1.01E+28
-4.6
63183
529
.
C 3 H 4 + M → H 2 CCCH + H + M
1.00E+17
0.0
70000
530
.
C 3 H 4 P + M → H 2 CCCH + H + M
1.00E+17
0.0
70000
531
.
C 3 H 4 + CH 3 → H 2 CCCH + CH 4
2.00E+12
0.0
7700
532
.
C 3 H 4 P + CH 3 → H 2 CCCH + CH 4
2.00E+12
0.0
7700
533
.
C 3 H 4 + H → C 2 H 2 + CH 3
2.00E+13
0.0
2400
544
.
C 3 H 4 P + O → HCO + C 2 H 3
7.50E+12
0.0
2102
551
.
C 2 H 2 + HCCO → H 2 CCCH + CO
1.10E+11
0.0
3000
564
.
2CH 3 + M → C 2 H 6 + M
3.18E+41
-7.0
2762
617
.
C 2 H 3 + O 2 → CH 2 O + HCO
4.00E+12
0.0
-250
837
.
H + C 3 H 8 → C 3 H 7 + H 2
1.32E+06
2.5
6756
838
.
OH + C 3 H 8 → C 3 H 7 + H 2 O
3.16E+07
1.8
934
847
.
HO 2 + C 3 H 7 → OH + C 2 H 5 + CH 2 0
2.41E+13
0.0
0
Part of C 3 H 4 is converted to C 3 H 4 P (propyne) through R524. Furthermore, C 2 H 2
combines with HCCO through R551 to give H 2 CCCH (propargyl radical), which
goes partially into C 3 H 4 P (-R530). C 3 H 4 and C 3 H 4 P play a central role in the
formation of the first aromatic ring. The importance of C 3 species as PAH precursors
has been already demonstrated in previous investigations. 33-36 Here, too, C 3 species
are seen to be precursors of PAH, rather than C 4 species, which are oxidized in a
large amount. Thus, only a small fraction of the total carbon atoms form PAH at
this condition, because a large amount of them oxidized through C 4 H 4 → H 2 CCCCH
Search WWH ::




Custom Search