Biomedical Engineering Reference
In-Depth Information
A clear correlation of specific physicochemical properties with the resulting
biological effects required for QSAR modeling is not available. However, based on
the data obtained for SiO 2 , it is likely that potential adverse effects of metal oxide
nanoparticles can be controlled by modifying their surface properties, which can
be helpful for safer design of engineered nanoparticles for those cases where the
product performance can tolerate such relatively drastic modifications of the nano-
material properties. The data from nanoGEM and NanoCare also provide guidance
for a future nanoparticle risk assessment. Since different physicochemical properties
seem to contribute to nanoparticle toxicity, a testing strategy should encompass mul-
tidisciplinary working with different characterization tools (see Chapter 16). Finally,
the correlations of in vivo and in vitro data presented here suggest that in vitro tests
may allow an initial screening to preselect potentially toxic nanoparticles, a strategy
that eventually should help to minimize the use of animals.
REFERENCES
Ahlinder, L., B. Ekstrand-Hammarström, P. Geladi, L. Osterlund. 2013. Large uptake of titania
and iron oxide nanoparticles in the nucleus of lung epithelial cells as measured by raman
imaging and multivariant classification. Biophysical J 105 (2):310-319.
Alessandrini, F., H. Schulz, S. Takenaka, B. Lentner, E. Karg, H. Behrendt, and T. Jakob.
2006. Effects of ultrafine carbon particle inhalation on allergic inflammation of the lung.
J Allergy Clin Immunol 117 (4):824-830.
Arts, J.H.E., H. Muijser, E. Duistermaat, K. Junker, and C. F. Kuper. 2007. Five-day inhala-
tion toxicity study of three types of synthetic amorphous silicas in Wistar rats and post-
exposure evaluations for up to 3 months. Food Chem Toxicol 45 (10):1856-1867.
Balasubramanyam, A., N. Sailaja, M. Mahboob, M. F. Rahman, S. M. Hussain, and
P.  Grover. 2009. In vivo genotoxicity assessment of aluminium oxide nanomaterials
in rat peripheral blood cells using the comet assay and micronucleus test. Mutagenesis
24 (3):245-251.
Balasubramanyam, M., A. Adaikalakoteswari, Z. Sameermahmood, and V. Mohan. 2010.
Biomarkers of oxidative stress: Methods and measures of oxidative DNA damage
(COMET assay) and telomere shortening. Methods Mol Biol 610:245-261.
Barnes, C. A., A. Elsaesser, J. Arkusz, A. Smok, J. Palus, A. Lesniak, A. Salvati, J. P. Hanrahan,
W. H. Jong, E. Dziubaltowska, M. Stepnik, K. Rydzynski, G. McKerr, I. Lynch, K.
A. Dawson, and C. V. Howard. 2008. Reproducible comet assay of amorphous silica
nanoparticles detects no genotoxicity. Nano Lett 8 (9):3069-3074.
Bhattacharya, K., M. Davoren, J. Boertz, R. P. F. Schins, E. Hoffmann and E. Dopp. 2009.
Titanium dioxide nanoparticles induce oxidative stress and DNA-adduct formation but
not DNA-breakage in human lung cells. Part Fibre Toxicol 6 (1):17.
Bihari, P., M. Vippola, S. Schultes, M. Praetner, A. G. Khandoga, C. A. Reichel, C. Coester, T.
Tuomi, M. Rehberg, and F. Krombach. 2008. Optimized dispersion of nanoparticles for
biological in vitro and in vivo studies. Part Fibre Toxicol 5 (1):14.
Bruch, J., S. Rehn, B. Rehn, P. J. Borm, and B. Fubini. 2004. Variation of biological responses
to different respirable quartz flours determined by a vector model. Int J Hyg Environ
Health 207 (3):203-216.
Buerki-Thurnherr, T., L. Xiao, L. Diener, O. Arslan, C. Hirsch, X. Maeder-Althaus, K.
Grieder, B. Wampfler, S. Mathur, P. Wick, and H. F. Krug. 2013. In vitro mechanis-
tic study towards a better understanding of ZnO nanoparticle toxicity. Nanotoxicology
7 (4):402-416.
Search WWH ::




Custom Search