Biomedical Engineering Reference
In-Depth Information
Cedervall, T., I. Lynch, S. Lindman, T. Berggard, E. Thulin, H. Nilsson, K. A. Dawson, and S.
Linse. 2007. Understanding the nanoparticle-protein corona using methods to quantify
exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci U.S.A.
104 (7):2050-2055.
Chen, H. W., S. F. Su, C. T. Chien, W. H. Lin, S. L. Yu, C. C. Chou, J. J. Chen, and P. C. Yang.
2006. Titanium dioxide nanoparticles induce emphysema-like lung injury in mice.
FASEB J 20 (13):2393-2395.
Cho, W. S., R. Duffin, S. E. Howie, C. J. Scotton, W. A. Wallace, W. Macnee, M. Bradley, I. L.
Megson, and K. Donaldson. 2011. Progressive severe lung injury by zinc oxide nanopar-
ticles; the role of Zn2+ dissolution inside lysosomes. Part Fibre Toxicol 8 (1):27.
Cho, W. S., R. Duffin, C. A. Poland, A. Duschl, G. J. Oostingh, W. Macnee, M. Bradley, I. L.
Megson, and K. Donaldson. 2012. Differential pro-inflammatory effects of metal oxide
nanoparticles and their soluble ions in vitro and in vivo; zinc and copper nanoparticles,
but not their ions, recruit eosinophils to the lungs. Nanotoxicology 6 (1):22-35.
Deng, Z. J., M. Liang, M. Monteiro, I. Toth, and R. F. Minchin. 2011. Nanoparticle-induced
unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nat
Nanotechnol 6 (1):39-44.
Di Valentin, E., C. Crahay, N. Garbacki, B. Hennuy, M. Gueders, A. Noel, J. M. Foidart,
J. Grooten, A. Colige, J. Piette, and D. Cataldo. 2009. New asthma biomarkers: Lessons
from murine models of acute and chronic asthma. Am J Physiol Lung Cell Mol Physiol
296 (2):L185-L197.
Di Virgilio, A. L., M. Reigosa, P. M. Arnal, and M. Fernandez Lorenzo de Mele. 2010.
Comparative study of the cytotoxic and genotoxic effects of titanium oxide and alu-
minium oxide nanoparticles in Chinese hamster ovary (CHO-K1) cells. J Hazard Mater
177 (1-3):711-718.
Donaldson, K., P. J. Borm, G. Oberdorster, K. E. Pinkerton, V. Stone, and C. L. Tran. 2008.
Concordance between in vitro and in vivo dosimetry in the proinflammatory effects of
low-toxicity, low-solubility particles: The key role of the proximal alveolar region. Inhal
Toxicol 20 (1):53-62.
Downs, T. R., M. E. Crosby, T. Hu, S. Kumar, A. Sullivan, K. Sarlo, B. Reeder, M. Lynch,
M. Wagner, T. Mills and S. Pfuhler. 2012. Silica nanoparticles administered at the
maximum tolerated dose induce genotoxic effects through an inflammatory reaction
while gold nanoparticles do not. Mutat Res Genetic Toxicol Environ Mutagen 745
(1-2):38-50.
Driscoll, K. E., L. C. Deyo, J. M. Carter, B. W. Howard, D. G. Hassenbein, and T. A. Bertram.
1997. Effects of particle exposure and particle-elicited inflammatory cells on mutation
in rat alveolar epithelial cells. Carcinogenesis 18 (2):423-430.
Duffin, R., L. Tran, D. Brown, V. Stone, and K. Donaldson. 2007. Proinflammogenic effects
of low-toxicity and metal nanoparticles in vivo and in vitro: Highlighting the role of
particle surface area and surface reactivity. Inhal Toxicol 19 (10):849-856.
Fujita, K., M. Horie, H. Kato, S. Endoh, M. Suzuki, A. Nakamura, A. Miyauchi, K. Yamamoto,
S. Kinugasa, K. Nishio, Y. Yoshida, H. Iwahashi, and J. Nakanishi. 2009. Effects of
ultrafine TiO 2 particles on gene expression profile in human keratinocytes with-
out illumination: Involvement of extracellular matrix and cell adhesion. Toxicol Lett
191 (2-3):109-117.
Gallagher, J., U. Heinrich, M. George, L. Hendee, D. H. Phillips, and J. Lewtas. 1994.
Formation of DNA adducts in rat lung following chronic inhalation of diesel emissions,
carbon black and titanium dioxide particles. Carcinogen 15 (7):1291-1299.
Gavett, S. H., X. Chen, F. Finkelman, and M. Wills-Karp. 1994. Depletion of murine CD4+
T lymphocytes prevents antigen-induced airway hyperreactivity and pulmonary eosino-
philia. Am J Respir Cell Mol Biol 10 (6):587-593.
Search WWH ::




Custom Search