Information Technology Reference
In-Depth Information
< d or d
< d , C ʵ ([ c , d ])=[ c +
, d ].So,
Now either c +
ʵ
c +
ʵ
.If c +
ʵ
ʵ
[ b , b ]
, d ].Andif d
,then C ʵ ([ c , d ])=[ d , d ] i.e., [ b , b ]
, d ].
I [ c +
ʵ
c +
ʵ
I [ c +
ʵ
Hence [ a , b ]
I C ʵ ([ c , d ]).
Now we shall check the case for C ʵ .Let[ a , b ]
I [ c , d ] implies C ʵ ([ a , b ])
I [ c , d ].
There are two cases. (a) C ʵ ([ a , b ])=[ a , b
ʵ
] (b) C ʵ ([ a , b ])=[ a , a ].
(a) If C ʵ ([ a , b ])=[ a , b
ʵ
],then a < b
ʵ
< b
d and b
ʵ
d
ʵ
.
Now either c < d
ʵ
or d
ʵ
c .
If c < d
ʵ
, C ʵ ([ c , d ])=[ c , d
ʵ
]. i.e., [ a , b
ʵ
]
I [ c , d
ʵ
] as a
c , b
d .
If d
ʵ
c , C ʵ ([ c , d ])=[ c , c ],So,[ a , b
ʵ
]
I [ c , c ] as a
c , b
ʵ
d
ʵ
c .
(b) Let C ʵ ([ a , b ])=[ a , a ].Then b
ʵ
a
b
d , a
c .
Now either c < d
ʵ
or d
ʵ
c .
If c < d
ʵ
, C ʵ ([ c , d ])=[ c , d
ʵ
]. i.e., [ a , a ]
I [ c , d
ʵ
] since a
c < d
ʵ
.
And if d
ʵ
c , C ʵ ([ c , d ])=[ c , c ].So,[ a , a ]
I [ c , c ].
Therefore, [ a , b ]
I C ʵ ([ c , d ]).
Hence, C ʵ ([ a , b ])= C ʵ ([ a , b ]) C ʵ ([ a , b ]) I C ʵ ([ c , d ]) C ʵ ([ c , d ])= C ʵ ([ c , d ]).
I [ c , d ] implies C ʵ ([ a , b ])
I [ c , d ] implies C I ( I ʵ , j
I C I ( I ʵ , j
Corollary 3.2. [ a , b ]
[ a , b ] )
[ c , d ] ).
I [ c , d ] implies C I ( I [ a , b ] ) I C I ( I [ c , d ] ).
Theorem 3.6. [ a , b ]
([ a , b ]), C j
Proof. Let C i
([ c , d ])bedegenerate. Then either (i) i = j or (ii) i
j , or (iii)
ʵ
ʵ
i .(i)If i = j , by Theorem 3.5, C I ( I [ a , b ] )= C i
I C i
([ c , d ])= C I ( I [ c , d ] ). (ii) By
j
([ a , b ])
ʵ
ʵ
l ( C j
Theorem 3.5, l ( C I ( I [ a , b ] )) = l ( C i
([ c , d ])) = l ( C I ( I [ c , d ] )).
That is, C I ( I [ a , b ] ) I C I ( I [ c , d ] ). (iii) If j i , r ( C I ( I [ c , d ] )) = r ( C j
l ( C i
([ a , b ]))
([ c , d ]))
ʵ
ʵ
ʵ
r ( C j
([ c , d ]))
([ a , b ])).
ʵ
ʵ
By Note 3.2, r ( C j
([ a , b ]))= r ( C i
([ a , b ])) = r ( C I ( I [ a , b ] )) i.e., C I ( I [ a , b ] ) I C I ( I [ c , d ] ).
ʵ
ʵ
Thus we have shown existence of a C I which satisfies conditions of Definition 3.5.
Nowwecomebacktothegeneral context of the Definition 3.5 for C I .
Note 3.4. C I ( I j
[ a , b ] ), C I ( I [ a , b ] ) e [ a , b ],and C I ( I j
[ a , b ] ), C I ( I [ a , b ] ), [ a , b ] are mutually over-
lapping pairs of intervals. And for I ʵ , C I ( I [ a , b ] ) e C I ( I ʵ , j
[ a , b ] )
e [ a , b ]
We now propose different notions of
|≈
based on the notion of iterative revision.
Definition 3.9. Given any collection of interval-valued fuzzy sets
{
T i } i I ,
ʣ 1 )
C I ( I j
ʣ 1 ) gr ( X
(
(
|≈
ʱ
) = r (
i I {
)] )
}
) for an arbitrarily fixed j
0,
[
x X T i ( x )
I T i (
ʱ
ʣ 2 )
ʣ 2 ) gr ( X
(
C I ( I [ x X T i ( x ) I T i (ʱ)] ) } ) = l ( i I { C I ( I [ x X T i ( x ) I T i (ʱ)] ) } ).
(
|≈
ʱ
) = r (
i I {
Theorem 3.7. For any graded consequence relation
|∼
, there is a collection interval-
ʣ 1 ), (
ʣ 2 ) coincide with
valued fuzzy sets such that
|≈
generated in the sense of (
|∼
.
Proof. Given
|∼
,agraded consequence relation, let us consider
{
T X } X P ( F ) such that T X
)= r [ Y P ( F ) {
C I ( I [ x X T Y ( x ) I T Y (ʱ)] ) } ]
(
ʱ
)=[ gr ( X
|∼ ʱ
)] BIR . We want to prove gr ( X
|∼ ʱ
Search WWH ::




Custom Search