Information Technology Reference
In-Depth Information
)= r [ Y P ( F ) {
ʣ 1 ), and gr ( X
C I ( I [ x X T Y ( x ) I T Y (ʱ)] ) } ]considering (ʣ 2 ).
|∼ ʱ
considering (
) is a degenerate interval, x X T Y ( x )
As for
ʱ
F and Y
F , T Y (
ʱ
I T Y (
ʱ
) is a de-
generate interval. Hence by the construction of I , I ʵ ,
C I ( I [ x X T Y ( x ) I T Y (ʱ)] )= x X T Y ( x ) I T Y (ʱ) = C I ( I [ x X T Y ( x ) I T Y (ʱ)] ).
i.e. r (
C I ( I [ x X T i ( x ) I T i (ʱ)] ) } ) = r ( Y P ( F ) { C I ( I [ x X T i ( x ) I T i (ʱ)] ) } )
Y P ( F ) {
= r [ Y P ( F ) [ x X T Y ( x )
I T Y (
ʱ
)]
Rest follows from the Theorem 3.4.
|≈
Let us distinguish the notions of graded semantic consequence by superscribing
) ,and
n ) , n =1,2.
(ʣ) ,
with their respective forms. So, we have
|≈
|≈
|≈
ʣ 1 )
ʣ )
(
ʣ
)
(
(
Theorem 3.8. gr ( X
|≈
ʱ
)
gr ( X
|≈
ʱ
)
gr ( X
|≈
ʱ
)
2 )
)
(ʣ)
and gr ( X
|≈
ʱ
)
gr ( X
|≈
ʱ
)
gr ( X
|≈
ʱ
).
Proof. Using Lemma 3.9 we have, l (
i I [
x X T i ( x )
I T i (
ʱ
)])
l (
I [
X T i ( x )
I T i (
ʱ
)])
r (
I [
X T i ( x )
I T i (
ʱ
)]) ...(i)
i
x
i
x
i I C I ( I [ x X T i ( x ) I T i (ʱ)] ), i I C I ( I j
Also
)] )
e i I [
x X T i ( x )
I T i (
ʱ
)]
[
x X T i ( x )
I T i (
ʱ
i I C I ( I j
and they are overlapping.So, l (
i I [
x X T i ( x )
I T i (
ʱ
)])
l (
)] ))
[
x X T i ( x )
I T i (
ʱ
r ( i I C I ( I j
[ x X T i ( x ) I T i (ʱ)] ))
r ( i I [ x X T i ( x ) I T i (ʱ)]) ...(ii)
ʣ 1 )
ʣ )
(
ʣ
)
(
(
|≈
|≈
|≈
(i) and (ii) imply, gr ( X
ʱ
)
gr ( X
ʱ
)
gr ( X
ʱ
).
I C I ( I [ x X T i ( x ) I T i (ʱ)] ))
Also following Note 3.4, l (
I [
X T i ( x )
I T i (
ʱ
)])
r (
i
x
i
r ( i I [ x X T i ( x ) I T i (ʱ)])
...(iii).
ʣ 2 )
ʣ )
(
ʣ
)
(
(
|≈
|≈
|≈
Hence, combining (i) and (iii), gr ( X
ʱ
)
gr ( X
ʱ
)
gr ( X
ʱ
).
ʣ 1 ) I ʵ , j
(of Definition 3.8) is chosen instead of I j
Note 3.5. If for (
then
2 )
1 )
)
(ʣ)
gr ( X
|≈
ʱ
)
gr ( X
|≈
ʱ
)
gr ( X
|≈
ʱ
)
gr ( X
|≈
ʱ
).
ʣ n )( n = 1, 2), satisfies (GC1), (GC2),
Theorem 3.9. Given
{
T i } i I ,
|≈
in the sense of (
and a variant of (GC3).
Y , C I ( I j
I C I ( I j
Proof. (GC1) is immediate. If X
[ x Y T i ( x ) I T i (ʱ)] )and
C I ( I [ x X T i ( x ) I T i (ʱ)] ) I C I ( I [ x Y T i ( x ) I T i (ʱ)] ) are obtained by condition (ii) of Defini-
tion 3.5 and Theorem 3.6 respectively. Hence by Lemma 3.8, GC2 holds for (
[ x X T i ( x ) I T i (ʱ)] )
ʣ 1 ), (
ʣ 2 ).
ʣ n ), n = 1, 2, we prove that a variant form of (GC3), i.e.
Now for each of (
|≈ ʣ n
|≈ ʣ n
|≈ ʣ
inf ʲ Z gr ( X
ʲ
)
gr ( X
Z
ʱ
)
gr ( X
ʱ
) holds.
|≈ ʣ 2
|≈ ʣ 2
inf ʲ Z gr ( X
ʲ
)
gr ( X
Z
ʱ
)
{∩ i I C I ( I [ x X T i ( x ) I T i (ʲ)] ) } ] r [ i I C I ( I [ x X Z T i ( x ) I T i (ʱ)] ) } ].
=inf ʲ Z [ r
ʲ Z {∩ i I C I ( I [ x X T i ( x ) I T i (ʲ)] ) } ] r [ i I C I ( I [ x X Z T i ( x ) I T i (ʱ)] ) } ]. (Lemma 3.5)
= r [ i I {∩ ʲ Z C I ( I [ x X T i ( x ) I T i (ʲ)] ) } ] r [ i I C I ( I [ x X Z T i ( x ) I T i (ʱ)] ) } ] (Lemma 3.6)
= r [
...(i)
ʲ Z C I ( I [ x X T i ( x ) I T i (ʲ)] ) e ʲ Z {∧ x X T i ( x ) I T i (ʲ) }
e ʲ Z {∧ x X T i ( x )
Using Note 3.4,
I T i (
ʲ
)
}
(Lemma 3.10).
ʲ Z C I ( I [ x X T i ( x ) I T i (ʲ)] )]) r ( i I [ ʲ Z {∧ x X T i ( x ) I T i (ʲ) } ]).
Hence, r (
i I [
i I [ C I ( I [ x X Z T i ( x ) I T i (ʱ)] )]) r ( i I [ {∧ x X Z T i ( x ) I T i (ʱ) } ]).
Similarly, r (
Search WWH ::




Custom Search