Information Technology Reference
In-Depth Information
Let I j
I [ a , b ] ) be a set containing iterated revisions of [ a , b ] upto j -th iterations.
[ a , b ] (
Definition 3.5. C I is a choice function over { I j
U } such that
0 , [ a , b ]
[ a , b ] : j
(i) C I ( I j
I j
I [ c , d ] implies C I ( I j
I C I ( I j
[ a , b ] )
[ a , b ] and (ii) [ a , b ]
[ a , b ] )
[ c , d ] ).
Let us present one such case of iterative-revision of intervals below.
> 0, C ʵ : U U such that C ʵ ([ a , b ])=[ a + ʵ , b ] if a + ʵ < b
= [ b , b ],otherwise.
Definition 3.6. For
ʵ
C ʵ : U U such that C ʵ ([ a , b ])=[ a , b ʵ] if a < b ʵ
= [ a , a ],otherwise.
C ʵ : U U such that C ʵ ([ a , b ])= C ʵ ([ a , b ]) C ʵ ([ a , b ]).
b
a
n and ap-
plying C ʵ finite number of times on [ a , b ], one instance of I [ a , b ] , we call I [ a , b ] , can be
obtained in the following way.
Let us choose an arbitrarily fixed number n .Given[ a , b ],fixing
ʵ
Definition 3.7. I [ a , b ] = { C i
0 , C 0
([ a , b ])=[ a , b ] , C i 1
([ a , b ]): i
([ a , b ]) is non-degenerate
}
.
ʵ
ʵ
ʵ
we have I 2
, I 2
1
2
Note 3.2. Tak ing
ʵ
=
[ . 3 ,. 7] =
{ [ . 3 ,. 7] , [ . 3 ,. 3] }
[ . 1 ,. 9] =
{ [ . 1 ,. 9] , [ . 4 ,. 4] }
.Itis
to be noted that as I 2
[ . 3 ,. 7] contains only two iterations I 2
[ . 3 ,. 7] = I 2 , j
[ . 3 ,. 7] =
{
[ . 3 ,. 7] , [ . 3 ,. 3]
}
2, where I 2 , j
for any number of iterations j
[ . 3 ,. 7] contains intervals upto j -th iterations.
Definition 3.8. C I ( I ʵ , j
I ʵ , j
[ a , b ] )=
[ a , b ] ,where j denotes the number of iterations.
Note 3.3. As I ʵ is obtained by finitely many iterations, C I ( I [ a , b ] )= I [ a , b ] ,whichis
adegenerate interval. Clearly, C I (of Definition 3.8) satisfies condition (i) of the Defi-
nition 3.5 as C I ( I ʵ , j
[ a , b ] )= C j
I [ a , b ] . To check that C I also satisfies condition (ii)
of Definition 3.5 we need to prove a series of results below.
([ a , b ])
ʵ
Proposition 3.5. C ʵ ([ a , b ]) e [ a , b ].
Proof. Two cases arise. (i) a +
< b i.e. a < b
ʵ
(ii) otherwise.
For all these cases the result is straightforward from the definitions of
ʵ
e and
.
Theorem 3.5. [ a , b ] I [ c , d ] implies C ʵ ([ a , b ]) I C ʵ ([ c , d ]).
Proof. Let [ a , b ]
I [ c , d ],then a
c , b
d ,and a
b , c
d .
Now (i) C
([ a , b ])=[ a +
ʵ
, b ] or (ii) C
([ a , b ])=[ b , b ].
ʵ
ʵ
(i) Let C
([ a , b ])=[ a +
ʵ
, b ] i.e. a +
ʵ
< b
d .Also a +
ʵ
c +
ʵ
.
ʵ
Now either c +
ʵ
< d or d
c +
ʵ
. Both the cases yield C
([ a , b ])
I C
([ c , d ]), as
ʵ
ʵ
for c +
ʵ
< d , C
([ c , d ])=[ c +
ʵ
, d ]. i.e., [ a +
ʵ
, b ]
I [ c +
ʵ
, d ],and
ʵ
for d
c +
ʵ
, C
([ c , d ])=[ d , d ] i.e., [ a +
ʵ
, b ]
I [ d , d ],since a +
ʵ
< b
d .
ʵ
(ii) Let C
([ a , b ])=[ b , b ],i.e. b
a +
ʵ
c +
ʵ
and also b
d .
ʵ
Search WWH ::




Custom Search