img
Zhang, Y., Zhang, W., Ogata, S., et al. (2004). Conformational changes of
past and have structures that are very similar. The poliovi-
the flavivirus E glycoprotein. Structure 12: 1607­1618.
ruses are spread by an oral­fecal route and have the abil-
Zhang, W., Chipman, P. R., Corver, J., et al. (2003). Visualization of mem-
ity to persist in a hostile extracellular environment for some
brane protein domains by cryo-electron microscopy of dengue virus.
time where they may contaminate drinking water or food.
Nature Struct. Biol. 10: 907­912.
Furthermore, they must pass through the stomach, where the
pH is less than 2, to reach the intestinal tract where they
X-ray Crystallography
begin the infection cycle. It is not surprising, therefore, that
the poliovirion is stable to storage and to treatments such as
Athappilly, F. K., Murali, R., Rux, J. J., et al. (1994). The refined crystal
exposure to mild detergents or to pH < 2. In contrast, rhino-
structure of hexon, the major coat protein of adenovirus type 2, at 2.9Ĺ
resolution. J. Mol. Biol. 242: 430­455.
viruses are spread by aerosols or contaminated mucus, and
Cheng, R. H., Kuhn, R. J., Olson, N. H., et al. (1995). Nucleocapsid and
spread normally requires close contact. The rhinovirion is
glycoprotein organization in an enveloped virus. Cell 80: 621­630.
less stable than the poliovirion. It survives for only a limited
Hogle, J. M., Chow, M., and Filman, D. J. (1985). Three-dimensional struc-
period of time in the external environment and is sensitive to
ture of poliovirus at 2.9Ĺ resolution. Science 229: 1358­1365.
treatment with detergents or exposure to pH 3.
Lescar, J., Roussel, A., Wien, M. W., et al. (2001). The fusion glycopro-
tein shell of Semliki Forest virus: an icosahedral assembly primed for
fusogenic activation at endosomal pH. Cell 105: 137­148.
Modis, Y., Ogata, S. A., Clements, D. E., and Harrison, S. C. (2003). A
FUR THER READING
ligand-binding pocket in the dengue virus envelope glycoprotein. Proc.
Natl. Acad. Sci. U.S.A. 100: 6986­6991.
General Structure of Viruses
Prasad, B. V., Hardy, M. E., Dokland, T., et al. (1999). X-ray crystallo-
graphic structure of the Norwalk virus capsid. Science 286: 287­290.
Johnson, J. E., and Speir, J. A. (1999). Principles of virus structure. In
Rossmann, M. G., Arnold, E., Erickson, J. W., et al. (1985). Structure of a
Encyclopedia of Virology (A. Granoff and R. G. Webster, Eds.), San
human common cold virus and functional relationship to other picorna-
Diego, Academic Press, pp, 1946­1956.
viruses. Nature (London) 317: 145­153.
Johnson, J. E. (1996). Functional implications of protein­protein interac-
Stehle, T., Gamblin, S. J., Yan, Y., et al. (1996). The structure of simian
tions in icosahedral viruses. Proc. Natl. Acad. Sci. U.S.A. 93: 27­33.
virus 40 refined at 3.1Ĺ resolution. Structure 4: 165­182.
Harrison, S. C. (2006). Principles of Virus Structure, Chapter 3 in: Fields
Virology, Fifth Edition (D. M. Knipe and P. M. Howley, Eds. in chief),
Philadelphia, Lippincott Williams & Wilkins, pp. 59­98.
Canyon Hypothesis
Chiu, W., Burnett, R. M., and Garcea, R. L. (1997). Structural Biology of
Viruses. Oxford, Oxford University Press.
Rossmann, M. G. (1989). The canyon hypothesis. Viral Immunol. 2: 143­161.
Dalton, A. J., and F. Haguenau, Eds. (1973). Ultrastructure of Animal
Viruses and Bacteriophages: An Atlas. Ultrastructure in Biological
Virus Assembly
Systems. New York, Academic Press.
Condit, R. C., Moussatche, N., and Traktman, P. (2006). In a Nutshell: struc-
Cryoelectron Microscopy
ture and assembly of the vaccinia virion. Adv. Virus. Res. 66: 31­ 35.
Kuhn, R. J., Zhang, W., Rossmann, M. G., et al. (2002). Structure of dengue
Baker, T. S., Olson, N. H., and Fuller, S. D. (1999). Adding the third dimen-
virus: implications for flavivirus organization, maturation, and fusion.
sion to virus life cycles: Three-dimensional reconstruction of icosahe-
Cell 108: 717­725
dral viruses from cryo-electron micrographs. Microbiol. Mol. Biol. Rev.
Mukhopadhyay, S., Kuhn, R. J., and Rossmann, M. G. (2005). A struc-
63: 862­922.
tural perspective of the Flavivirus life cycle. Nature Rev. Microbiol. 3:
Forsell, K., Xing, L., Kozlovska, T., Cheng, R. H., and Garoff, H. (2000).
13­22.
Membrane proteins organize a symmetrical virus. EMBO J. 19:
Pesavento, J. B., Crawford, S. E., Estes, M. K., and Prasad, B. V. V. (2006).
5081­5091.
Rotavirus proteins: structure and assembly. Curr. Top. Microbiol.
Mukhopadhyay, S., Zhang, W., Gabler, S., et al. (2006). Mapping the
Immunol. 309: 189­219.
structure and function of the E1 and E2 glycoproteins of Alphaviruses.
Roy, P., and Noad, R. (2006). Bluetongue virus assembly and morphogen-
Structure 14: 63­73
esis. Curr. Top. Microbiol. Immunol. 309: 87­116.
Zhang, Y., Corver, J., Chipman, P. R., et al. (2003). Structures of immature
Strauss, J. H., Strauss, E. G., and Kuhn, R. J. (1995). Budding of alphavi-
flavivirus particles. EMBO J. 22: 2604­2613.
ruses. Trends Microbiol. 3: 346­350.
Search WWH :
Custom Search
Previous Page
Viruses And Human Disease Topic Index
Next Page
Viruses And Human Disease Bookmarks
Home