Reactor Modeling Part 1 (Catalytic Reforming)

Development of the Kinetic Model

The kinetic model used for the simulation of catalytic reforming reactors is an extension of that reported by Krane et al. (1959), which utilizes lumped mathematical representation of the reactions that take place. These representations are written in terms of isomers of the same nature (paraffins, naphthenes, or aromatics). These groups range from 1 to 10 carbon atoms for paraffins, and from 6 to 10 carbon atoms for naphthenes and aromatics. The original model reported by Krane et al. (1959) includes 53 chemical reactions, which are summarized in Table 4.4 .

TABLE 4.4. Chemical Reactions Considered in the Original Kinetic Model Reported by Krane et al. (1959), Activation Energies, and Factors for Pressure Effect for Each Reforming Reaction

Reactiona

Number of Reactions

EAj (kcal/mol)

Paraffins

tmp6C5-699

4


45

tmp6C5-700

21

55

Subtotal

25

Naphthenes

tmp6C5-701

5

30

tmp6C5-702

6

55

tmp6C5-703

5

45

Subtotal

16

Aromatics

tmp6C5-704

5

40

tmp6C5-705

4

45

tmp6C5-706

1

30

Subtotal

10

Reaction

ak

Isomerization

0.370

Dehydrocyclization

-0.700

Hydrocracking

0.433

Hydrodealkylation

0.500

Dehydrogenation

0.000

"n, number of atoms of carbontmp6C5707_thumb

To account for more reactions and have better naphtha composition predictability, the original model was modified in several ways, described below.

Kinetic Parameters for Hydrocarbons with 11 Atoms of Carbon Typical naphthas used as feed in catalytic reforming include hydrocarbons with up to 11 atoms of carbon, as can be seen in Table 4.5. The original Krane et al. (1959) model considers reactions only for hydrocarbons with 10 atoms of carbon. To maintain the original values of kinetic parameters, it was assumed that the hydrocarbons reported as having 10 atoms of carbon are, in fact, a lump of hydrocarbons with 10 and 11 atoms of carbon: C+0 = C10 + Cn. In such a way, the different hydrocarbon species can be delumped as follows:

tmp6C5708_thumb

TABLE 4.5. Typical Compositions of Various Feeds to Catalytic Reforming Process

Naphthas

Average Value

1

2

3

4

5

6

n-Paraffins

C4

0

1.568

0

0

0

0

0.261

C5

1.818

11.368

9.818

10.362

1.983

1.392

6.124

C6

9.633

8.034

8.356

8.412

9.467

9.477

8.897

C7

8.116

6.778

7.114

7.148

8.386

8.402

7.657

C8

6.464

5.326

5.602

5.616

6.640

6.683

6.055

C9

4.454

3.514

3.858

3.809

4.625

4.68

4.157

C10

1.640

1.403

1.707

1.635

1.948

2.066

1.733

CU

0.297

0.266

0.321

0.292

0.318

0.370

0.311

Subtotal

32.422

38.257

36.776

37.274

33.367

33.07

35.194

i- Paraffins

C4

0

0.076

0

0

0

0

0.013

C5

0.565

6.459

3.191

3.771

0.794

0.453

2.539

C6

8.868

7.289

7.548

7.495

5.373

5.413

6.998

C7

6.779

5.676

5.973

5.965

6.943

6.963

6.383

C8

7.070

5.897

6.310

6.187

7.289

7.344

6.683

C9

6.241

5.066

5.499

5.311

6.448

6.509

5.846

C10

3.526

2.84

3.384

3.221

3.899

4.402

3.545

CU

0.212

0.203

0.281

0.254

0.289

0.374

0.269

Subtotal

33.261

33.506

32.186

32.204

31.035

31.458

32.275

Naphthenes

C5

0.897

0.977

0.973

0.978

0.333

0.286

0.741

C6

5.069

4.345

4.435

4.434

5.226

5.166

4.779

C7

6.934

6.038

6.071

6.065

7.179

7.157

6.574

C8

5.112

4.307

4.593

4.565

5.320

5.461

4.893

C9

1.842

1.535

1.655

1.578

1.938

1.970

1.753

C10

0.495

0.398

0.558

0.492

0.561

0.641

0.524

CU

0.096

0.085

0.106

0.099

0.105

0.125

0.103

Subtotal

20.445

17.685

18.391

18.211

20.662

20.806

19.367

Aromatics

C6

1.393

1.074

1.200

1.199

1.380

1.351

1.266

C7

3.506

2.676

3.024

3.038

3.634

3.576

3.242

C8

5.326

4.015

4.529

4.542

5.507

5.428

4.891

C9

2.908

2.186

2.956

2.671

3.488

3.218

2.905

C10

0.707

0.569

0.903

0.830

0.891

1.056

0.826

CU

0.032

0.032

0.035

0.031

0.036

0.037

0.034

Subtotal

13.872

10.552

12.647

12.311

14.936

14.666

13.164

The reaction rate equation originally reported for each hydrocarbon can then be expressed as

tmp6C5709_thumb

This equation can also be written as a function of C10 and C11 and their individual kinetic parameters (k10 and k11):

tmp6C5710_thumb

By combining Eqs. (4.22) and (4.23), the following relationship can be derived:

tmp6C5711_thumb

where

tmp6C5712_thumb

Equations (4.24) to (4.26) can be used to calculate the values of the individual kinetic parameters for hydrocarbons with 10 and 11 atoms of carbon, k10 and k11, respectively. For this calculation, the relationships defined by Eqs. (4.25) and (4.26) are needed.

To determine the value of the constant R for each hydrocarbon type [(Eq. (4.25)], typical feed used in a commercial catalytic reforming unit was analyzed during different periods of time. Feed compositions are reported in Table 4.5. From this table, the corresponding values of R for this specific feed are

tmp6C5713_thumb

For calculation of RP, the total amount of paraffin was used: that is, the sum of n- and /-paraffins. The values of K [Eq. (4.26)] were obtained for each reaction by extrapolation of the relationships calculated with the original kinetic parameters reported by Krane et al. (1959) as a function of the number of atoms of carbon (e.g., k7/k6, k8/k7, k9/k8- and k10/k9). Figure 4.5 illustrates this procedure for two reactions of hydrocracking of paraffins to paraffins with fewer carbon atoms. Details on the final set of individual kinetic parameters for the reactions of hydrocarbons with 10 and 11 atoms of carbon are provided in Table 4.6 .

Example of the extrapolation procedure to calculate the constant K.

Figure 4.5. Example of the extrapolation procedure to calculate the constant K.

Reactions for the Formation of Benzene The original model proposed by Krane et al. (1959) does not take into account either the formation of cyclo-hexane (N-) via methylcyclopentane (MCP) isomerization ( MCP o N6) or the production of MCP from P6 (P6 o MCP). The Krane et al. (1959) model considers only the path reaction P6 o N6 o A6. Due to the importance of benzene content in reformate for accurate prediction, it is necessary to add those reactions in which benzene is taking part. Thus, the reaction network shown in Figure 4.6 and the corresponding contribution to the reaction rate equations were added to the kinetic model. Also, it was assumed that all the benzene is produced via cyclohexane dehydrogenation.

Isomerization of Paraffins The reactions of isomerization of n-paraffins to i-paraffins are highly desired during catalytic reforming of naphtha, since the i-paraffins produced contribute to the increase in octane number of the refor-mate. Isomerization is a fast reaction catalyzed by acid sites, and it reaches equilibrium at catalytic reforming conditions. Hence, paraffin distribution can be estimated by thermodynamic equilibrium calculation.

For the following general isomerization reaction:

tmp6C5715_thumb

the equilibrium constant (Ke) is

tmp6C5716_thumb

TABLE 4.6. Individual Kinetic Constants for Hydrocarbons with 10 and 11 Atoms of Carbon

Reaction

tmp6C5-717 tmp6C5-718 tmp6C5-719 tmp6C5-720 tmp6C5-721 tmp6C5-722 tmp6C5-723 tmp6C5-724 tmp6C5-725
tmp6C5-726

2.2931

1.3609

1.4033

1.4645

0.0254

0.0243

0.0356

tmp6C5-727

1.1667

1.0000

1.3571

1.5789

1.6333

1.6678

0.0049

0.0046

0.0077

tmp6C5-728

1.2000

1.0000

1.3888

1.5600

1.6154

1.6499

0.0063

0.0059

0.0097

tmp6C5-729

1.1852

1.3438

1.5814

1.6029

1.6170

0.0109

0.0103

0.0166

tmp6C5-730

1.5714

1.6182

1.6212

0.0089

0.0084

0.0135

tmp6C5-731

0.0124

0.0117

0.0191

tmp6C5-732

0.1351

2.3500

1.1489

1.0000

1.0000

0.0054

0.0054

0.0054

tmp6C5-733

2.2587

2.3678

1.1395

1.0000

1.0000

0.2450

0.2450

0.2450

tmp6C5-734

14.111

1.0551

1.0000

0.0134

0.0134

0.0134

tmp6C5-735

1.0551

1.0000

0.0134

0.0134

0.0134

tmp6C5-736

1.0000

0.0080

0.0080

0.0080

tmp6C5-737

5.0000

1.2000

1.0000

0.0006

0.0006

0.0006

tmp6C5-738

1.2000

1.0000

0.0006

0.0006

0.0008

tmp6C5-739

1.0000

1.0000

1.0000

1.0000

0.0016

0.0016

0.0016

aExtrapolated values.

‘Original kinetic parameters reported by Krane et al. (1959). ‘Calculated values of kinetic parameters.

Reaction network for benzene formation.

Figure 4.6. Reaction network for benzene formation.

The effect of temperature on equilibrium constant is given by (Smith et al. 1996) where AG° is the reaction standard Gibbs energy. AG° can be determined as tmp6C5741_thumb tmp6C5742_thumb

tmp6C5743_thumb

tmp6C5744_thumb

where

tmp6C5745_thumb

tmp6C5746_thumb

To calculate AG° with Eq. (4.33) – the following dependence of heat capacity on temperature can be used:

tmp6C5747_thumb

By sustituting Eq. (4.34) in Eq. (4.33), the integrals can be evaluated using the following final forms:

To employ the foregoing procedure for equilibrium calculation of the paraffin isomerization reactions that occur in catalytic reforming, some thermody-namic data are required, which are depicted in Table 4.7. For example, for the isomerization of n-hexane, four isomers are obtained: 2-methylpentane, 3- methylpentane, 2,2 – dimethylbutane, and 2,3 – dimethylbutane. Each isomeri-zation reaction needs to be considered separately. The values calculated for all parameters required to evaluate AG° are reported in Table 4.8. With AG°, Ke is then computed using Eq. (4.32)- Once the values of all Ke have been determined, the formula needed to calculate the composition (y ) of all isomers is deduced from Eq. (4.31):

tmp6C5758_thumb

TABLE 4.7. Thermodynamic Data of Various Paraffins

Name

A

B

n -Butane

2.266

7.91E-02

;-Butane

-0.332

9.19E-02

«-Pentane

-0.866

1.16E-01

2-Methylbutane

-2.275

1.21E-01

2,2-Dime thylpropane

-3.963

1.33E-01

7!-Hexane

-1.054

1.39E-01

2-Methylpentane

-2.524

1.48E-01

3-Methylpentane

-0.570

1.36E-01

2,2-Dime thylbutane

-3.973

1.50E-01

2,3-Dimethylbutane

-3.489

1.47E-01

n -Heptane

-1.229

1.62E-01

2-Methylhexane

-9.408

2.06E-01

3-Methylhexane

-1.683

1.63E-01

2,2-Dime thylpentane

-11.966

2.14E-01

2,3-Dimethylpentane

-1.683

1.63E-01

2,4-Dime thylpentane

-1.683

1.63E-01

3,3-Dime thylpentane

-1.683

1.63E-01

3-Ethylpentane

-1.683

1.63E-01

n-Octane

-1.456

1.84E-01

2-Methylheptane

-21.435

2.97E-01

3-Methylheptane

-2.201

1.88E-01

4-Methylheptane

-2.201

1.88E-01

2,2-Dime thylhexane

-2.201

1.88E-01

c

D

-2.65E-05

-6.74E-10

-30.15

-4.10

^.41E-05

6.92E-09

-32.15

-4.99

-6.16E-05

1.27E-08

-35.00

-2.00

-6.52E-05

1.37E-08

-36.92

-3.54

-7.90E-05

1.82E-08

-39.67

-3.64

-7.45E-05

1.55E-08

-39.96

-0.06

-8.53E-05

1.93E-08

^1.66

-1.20

-6.85E-05

1.20E-08

-41.02

-0.51

-8.31E-05

1.64E-08

^4.35

-2.30

-8.06E-05

1.63E-08

^2.49

-0.98

-8.72E-05

1.83E-08

^4.88

1.91

-1.50E-04

4.39E-08

^6.59

0.77

-8.92E-05

1.87E-08

^5.96

1.10

-1.52E-04

4.15E-08

^9.27

0.02

-8.92E-05

1.87E-08

-A1.62

0.16

-8.92E-05

1.87E-08

^8.28

0.74

-8.92E-05

1.87E-08

-48.17

0.63

-8.92E-05

1.87E-08

^5.33

2.63

-1.00E-04

2.12E-08

^9.82

3.92

-2.81E-04

1.10E-07

-51.50

3.05

-1.05E-04

2.32E-08

-50.82

3.28

-1.05E-04

2.32E-08

-50.69

4.00

-1.05E-04

2.32E-08

-53.71

2.56

2,3-Dimethylhexane

-2.201

1.88E-01

2,4-Dimethylhexane

-2.201

1.88E-01

2,5-Dimethylhexane

-2.201

1.88E-01

3,3-Dimethylhexane

-2.201

1.88E-01

3,4-Dimethylhexane

-2.201

1.88E-01

3-Ethylhexane

-2.201

1.88E-01

2,2,3 -Trime thylpentane

-2.201

1.88E-01

2,2,4 -Trime thylpentane

-1.782

1.86E-01

2,3,3 -Trime thylpentane

-2.201

1.88E-01

2,3,4 -Trime thylpentane

-2.201

1.88E-01

2 Methyl-3-ethylpentane

-2.201

1.88E-01

3 Methyl-3-ethylpentane

-2.201

1.88E-01

«-Nonane

0.751

1.62E-01

2,2,3 Trimethylhexane

-10.899

2.52E-01

2,2,4 Trimethylhexane

-14.405

2.64E-01

2,2,5 Trimethylhexane

-12.923

2.62E-01

3,3 Diethylpentane

-16.067

2.69E-01

2,2,3,3 Tetramethylpentane

-13.037

2.60E-01

2,2,3,4 Tetramethylpentane

-13.037

2.60E-01

2,2,4,4 Tetramethylpentane

-16.099

2.79E-01

2,3,3,4 Tetramethylpentane

-13.117

2.61E-01

«-Decane

-1.890

2.30E-01

3,3,5 Trimethylheptane

-16.808

2.94E-01

2,2,3,3 Tetramethylhexane

-14.052

2.94E-01

2,2,5,5 Tetramethylhexane

-14.890

2.97E-01

-1.05E-04

2.32E-08

-51.13

4.23

-1.05E-04

2.32E-08

-52.44

2.80

-1.05E-04

2.32E-08

-53.21

2.50

-1.05E-04

2.32E-08

-52.61

3.17

-1.05E-04

2.32E-08

-50.91

4.14

-1.05E-04

2.32E-08

-50.40

3.95

-1.05E-04

2.32E-08

-52.61

4.09

-1.02E-04

2.19E-08

-53.57

3.27

-1.05E-04

2.32E-08

-51.73

4.52

-1.05E-04

2.32E-08

-51.97

4.52

-1.05E-04

2.32E-08

-50.48

5.08

-1.05E-04

2.32E-08

-51.38

4.76

-4.61E-05

-7.12E-09

-54.74

5.93

-1.71E-04

4.75E-08

-57.65

5.86

-1.84E-04

5.23E-08

-58.13

5.38

-1.85E-04

5.39E-08

-60.71

3.21

-1.91E-04

5.51E-08

-55.44

8.38

-1.81E-04

5.12E-08

-56.70

8.20

-1.81E-04

5.12E-08

-56.64

7.80

-2.06E-04

6.15E-08

-57.83

8.13

-1.82E-04

5.15E-08

-56.46

8.15

-1.26E-04

2.70E-08

-59.67

7.94

-2.07E-04

5.86E-08

-61.80

8.02

-2.11E-04

6.17E-08

-61.66

11.28

-2.14E-04

6.25E-08

-68.32

4.66

TABLE 4.8. Example of Calculation of Ke for the Isomerization of n-Hexane (T = 400 K)

tmp6C5-748 tmp6C5-749 tmp6C5-750 tmp6C5-751 tmp6C5-752 tmp6C5-753
tmp6C5-754

-1.47

0.0087

tmp6C5-755

- 1.14

- 1.200

3.32

0.484

- 0.0031

tmp6C5-756

- 0.45

-0.303

1.35

-2.919

0.0113

tmp6C5-757

- 2.24

- 1.890

6.62

-2.435

0.0079

-6.1E- 06 7.8E- 10 – 2.53

- 0.92

-0.455

1.58

Next post:

Previous post: