antisepsis (Medicine)

Eating, with or without spices, is one of the most dangerous things I do every day. Germs and their toxins are everywhere. I often read of deaths and illnesses associated with contaminated foods, be it hamburger or apple juice. All this despite modern preservatives, refrigeration, and hygienic food preparation. “Phytochemicals are legacies of multiple co-evolutionary races between plants and their enemies—parasites, pathogens, and herbivores. These chemical cocktails are the plants’ recipes for survival” (Sherman and Flaxman, 2001).
After examining 43 spices in more than 4500 meat-based recipes from traditional cooktopics of 36 countries, Sherman and Billing (1999) concluded that spices are used because of their antimicrobial properties. Many spices have antimicrobial (especially antibacterial) properties. Spice use is greater in hot climates, where meats spoil relatively quickly, than in cool climates. Recipes from hot climates use more of the most highly inhibitory spices. Spices are often used in quantities sufficient to kill microbes and in ways that preserve their antimicrobial properties. Cooktopics provide records of our co-evolutionary race with foodborne pathogens (Chasan, R., 1999).
Still, foodborne bacteria (especially species of Clostridium, Escherichia, Listeria, Salmonella, Staphylococcus, and Streptococcus), or their toxins, debilitate millions of people annually and kill thousands. During 1971-1990, food poisoning, primarily bacterial, affected 29.2 out of every 100,000 Japanese but only 3.0 out of every 100,000 Koreans. The Korean meat-based recipes are spicier than the Japanese (Sherman and Billing, 1999). Even here at home in the U.S., foodborne illnesses afflict an estimated 80 million people per year, and 1 in 10 Americans experiences bacteria-related food poisoning annually (Hui et al., 1994). Ten thousand or more Americans will die of food poisoning, said CSPI one year. Moreover, new foodborne pathogens continually are evolving, along with resistance among existing pathogens to monochemical bactericides. Still, bacteria are more frequently implicated in foodborne disease outbreaks than yeasts or fungi. All 30 spices tested were found to kill or inhibit at least 25% of the bacterial species on which they had been tested, and 15 inhibited at least 75% of bacterial species (Sherman and Billing, 1999). Garlic, onion, allspice, and oregano were most potent. They inhibited or killed every bacterium tested. One study tested eugenol, menthol, and anethole on three pathogenic bacteria, Salmonella typhimurium, Staphylococcus aureus, and Vibrio parahaemolyticus. Each spice component inhibited the bacteria differently (and this points to synergies with spice mixtures). Eugenol was more active than thymol, which was more active than anethole. Eugenol and isoeugenol are sporostatic to Bacillus subtilis at the 0.05-0.06% level. Gingerol and zingerone also have sporostatic activity, but at 0.8–0.9%. Inhibition effectiveness was related inversely to the molecular weight of the phenolic (Tainter and Grenis, 1993). The longer the side chain on the phenolic ring structure, the less the antimicrobial activity; 0.12% ground glove and 0.02% eugenol decreased the rate and extent of germination of Bacillus subtilis spores.
Carnosol and ursolic acid were tested on six strains of foodborne bacteria and yeast. Their antimicrobial activity was compared to BHA and BHT, also known to have antioxidant and antimicrobial activity. Carnosol was more effective than BHA or BHT. Ursolic acid was more effective than BHT (Tainter and Grenis, 1993).

Next post:

Previous post: