SUPERSONIC PASSENGER PLANE (Inventions)

The invention: The first commercial airliner that flies passengers at speeds in excess of the speed of sound.

The people behind the invention:

Sir Archibald Russell (1904- ), a designer with the British
Aircraft Corporation Pierre Satre (1909- ), technical director at Sud-Aviation Julian Amery (1919- ), British minister of aviation, 1962-1964 Geoffroy de Cource (1912- ), French minister of aviation,
1962
William T. Coleman, Jr. (1920- ), U.S. secretary of transportation, 1975-1977

Birth of Supersonic Transportations

On January 21, 1976, the Anglo-French Concorde became the world’s first supersonic airliner to carry passengers on scheduled commercial flights. British Airways flew a Concorde from London’s Heathrow Airport to the Persian Gulf emirate of Bahrain in three hours and thirty-eight minutes. At about the same time, Air France flew a Concorde from Paris’s Charles de Gaulle Airport to Rio de Janeiro, Brazil, in seven hours and twenty-five minutes. The Concordes’ cruising speeds were about twice the speed of sound, or 1,350 miles per hour. On May 24,1976, the United States and Europe became linked for the first time with commercial supersonic air transportation. British Airways inaugurated flights between Dulles International Airport in Washington, D.C., and Heathrow Airport. Likewise, Air France inaugurated flights between Dulles International Airport and Charles de Gaulle Airport. The London-Washington, D.C., flight was flown in an unprecedented time of three hours and forty minutes. The Paris-Washington, D.C., flight was flown in a time of three hours and fifty-five minutes.


The Decision to Build the SST

Events leading to the development and production of the Anglo-French Concorde went back almost twenty years and included approximately $3 billion in investment costs. Issues surrounding the development and final production of the supersonic transport (SST) were extremely complex and at times highly emotional. The concept of developing an SST brought with it environmental concerns and questions, safety issues both in the air and on the ground, political intrigue of international proportions, and enormous economic problems from costs of operations, research, and development.
In England, the decision to begin the SST project was made in October, 1956. Under the promotion of Morien Morgan with the Royal Aircraft Establishment in Farnborough, England, it was decided at the Aviation Ministry headquarters in London to begin development of a supersonic aircraft. This decision was based on the intense competition from the American Boeing 707 and Douglas DC-8 subsonic jets going into commercial service. There was little point in developing another subsonic plane; the alternative was to go above the speed of sound. In November, 1956, at Farnborough, the first meeting of the Supersonic Transport Aircraft Committee, known as STAC, was held.
Members of the STAC proposed that development costs would be in the range of $165 million to $260 million, depending on the range, speed, and payload of the chosen SST. The committee also projected that by 1970, there would be a world market for at least 150 to 500 supersonic planes. Estimates were that the supersonic plane would recover its entire research and development cost through thirty sales. The British, in order to continue development of an SST, needed a European partner as a way of sharing the costs and preempting objections to proposed funding by England’s Treasury.
In 1960, the British government gave the newly organized British Aircraft Corporation (BAC) $1 million for an SST feasibility study. Sir Archibald Russell, BAC’s chief supersonic designer, visited Pierre Satre, the technical director at the French firm of Sud-Aviation. Satre’s suggestion was to evolve an SST from Sud-Aviation’s highly successful subsonic Caravelle transport. By September, 1962, an agreement was reached by Sud and BAC design teams on a new SST, the Super Caravelle.
There was a bitter battle over the choice of engines with two British engine firms, Bristol-Siddeley and Rolls-Royce, as contenders. Sir Arnold Hall, the managing director of Bristol-Siddeley, in collaboration with the French aero-engine company SNECMA, was eventually awarded the contract for the engines. The engine chosen was a “civilianized” version of the Olympus, which Bristol had been developing for the multirole TRS-2 combat plane.

The Concorde Consortium

On November 29, 1962, the Concorde Consortium was created by an agreement between England and the French Republic, signed by Ministers of Aviation Julian Amery and Geoffroy de Cource (1912- ). The first Concorde, Model 001, rolled out from Sud-Aviation’s St. Martin-du-Touch assembly plant on December 11, 1968. The second, Model 002, was completed at the British Aircraft Corporation a few months later. Eight years later, on January 21, 1976, the Concorde became the world’s first supersonic airliner to carry passengers on scheduled commercial flights.
Development of the SST did not come easily for the Anglo-French consortium. The nature of supersonic flight created numerous problems and uncertainties not present for subsonic flight. The SST traveled faster than the speed of sound. Sound travels at 760 miles per hour at sea level at a temperature of 59 degrees Fahrenheit. This speed drops to about 660 miles per hour at sixty-five thousand feet, cruising altitude for the SST, where the air temperature drops to 70 degrees below zero.
The Concorde was designed to fly at a maximum of 1,450 miles per hour. The European designers could use an aluminum alloy construction and stay below the critical skin-friction temperatures that required other airframe alloys, such as titanium. The Concorde was designed with a slender curved wing surface. The design incorporated widely separated engine nacelles, each housing two Olympus 593 jet engines. The Concorde was also designed with a “droop snoot,” providing three positions: the supersonic configuration, a heat-visor retracted position for subsonic flight, and a nose-lowered position for landing patterns.

Impact

Early SST designers were faced with questions such as the intensity and ionization effect of cosmic rays at flight altitudes of sixty to seventy thousand feet. The “cascade effect” concerned the intensification of cosmic radiation when particles from outer space struck a metallic cover. Scientists looked for ways to shield passengers from this hazard inside the aluminum or titanium shell of an SST flying high above the protective blanket of the troposphere. Experts questioned whether the risk of being struck by meteorites was any greater for the SST than for subsonic jets and looked for evidence on wind shear of jet streams in the stratosphere.
Other questions concerned the strength and frequency of clear air turbulence above forty-five thousand feet, whether the higher ozone content of the air at SST cruise altitude would affect the materials of the aircraft, whether SST flights would upset or destroy the protective nature of the earth’s ozone layer, the effect of aerodynamic heating on material strength, and the tolerable strength of sonic booms over populated areas. These and other questions consumed the designers and researchers involved in developing the Concorde.
Through design research and flight tests, many of the questions were resolved or realized to be less significant than anticipated. Several issues did develop into environmental, economic, and international issues. In late 1975, the British and French governments requested permission to use the Concorde at New York’s John F. Kennedy International Airport and at Dulles International Airport for scheduled flights between the United States and Europe. In December, 1975, as a result of strong opposition from anti-Concorde environmental groups, the U.S. House of Representatives approved a six-month ban on SSTs coming into the United States so that the impact of flights could be studied. Secretary of Transportation William T. Coleman, Jr., held hearings to prepare for a decision by February 5, 1976, as to whether to allow the Concorde into U.S. airspace. The British and French, if denied landing rights, threatened to take the United States to an international court, claiming that treaties had been violated.
The treaties in question were the Chicago Convention and Bermuda agreements of February 11,1946, and March 27,1946. These
treaties prohibited the United States from banning aircraft that both France and Great Britain had certified to be safe. The Environmental Defense Fund contended that the United States had the right to ban SST aircraft on environmental grounds.
Under pressure from both sides, Coleman decided to allow limited Concorde service at Dulles and John F. Kennedy airports for a sixteen-month trial period. Service into John F. Kennedy Airport, however, was delayed by a ban by the Port Authority of New York and New Jersey until a pending suit was pursued by the airlines. During the test period, detailed records were to be kept on the Concorde’s noise levels, vibration, and engine emission levels. Other provisions included that the plane would not fly at supersonic speeds over the continental United States; that all flights could be cancelled by the United States with four months notice, or immediately if they proved harmful to the health and safety of Americans; and that at the end of a year, four months of study would begin to determine if the trial period should be extended.
The Concorde’s noise was one of the primary issues in determining whether the plane should be allowed into U.S. airports. The Federal Aviation Administration measured the effective perceived noise in decibels. After three months of monitoring the Concorde’s departure noise at 3.5 nautical miles was found to vary from 105 to 130 decibels. The Concorde’s approach noise at one nautical mile from threshold varied from 115 to 130 decibels. These readings were approximately equal to noise levels of other four-engine jets, such as the Boeing 747, on landing but were twice as loud on takeoff.

The Economics of Operation

Another issue of significance was the economics of Concorde’s operation and its tremendous investment costs. In 1956, early predictions of Great Britain’s STAC were for a world market of 150 to 500 supersonic planes. In November, 1976, Great Britain’s Gerald Kaufman and France’s Marcel Cavaille said that production of the Concorde would not continue beyond the sixteen vehicles then contracted for with BAC and Sud-Aviation. There was no demand by U.S. airline corporations for the plane. Given that the planes could not fly at supersonic speeds over populated areas because of the
sonic boom phenomenon, markets for the SST had to be separated by at least three thousand miles, with flight paths over mostly water or desert. Studies indicated that there were only twelve to fifteen routes in the world for which the Concorde was suitable. The planes were expensive, at a price of approximately $74 million each and had a limited seating capacity of one hundred passengers. The plane’s range was about four thousand miles.
These statistics compared to a Boeing 747 with a cost of $35 million, seating capacity of 360, and a range of six thousand miles. In addition, the International Air Transport Association negotiated that the fares for the Concorde flights should be equivalent to current first-class fares plus 20 percent. The marketing promotion for the Anglo-French Concorde was thus limited to the elite business traveler who considered speed over cost of transportation. Given these factors, the recovery of research and development costs for Great Britain and France would never occur.
See also Airplane; Bullet train; Dirigible; Rocket; Stealth aircraft; Turbojet; V-2 rocket.

Next post:

Previous post: