Distance Learning in 21st Century Education

introduction

Colleges and universities around the country are scrambling to keep pace with the innovations in technology to engage a generation of students that come to campus with laptops, camera cell phones, and the knowledge and skills on how to use Google. Some professors make available course websites while others use podcast lectures, but these are often considered experimental. Many of these tools and techniques aim to revolutionize the learning process, however, many faculty and students worry that these advances are just distracting from the material and from time tested methods of teaching. Since no one understands the full impacts of these teaching tools or about their long range effectiveness, for now, colleges and universities are engaged in a beta test to determine how technologies will co-exist with or replace the traditional approaches. The challenge of each innovation is that it must be carefully measured against the successes of the traditional approaches.

Teaching with technology takes time. There is the challenge of choosing equipment, redesigning courses, learning software, and building new protocols for projects, quizzes, course administration, feedback routines, lectures, and course administration. Today, these efforts must be somehow carried out in addition to continuing to teach and update current courses via the traditional means. In addition, when dealing with technology, the methods and techniques mastered last year or even last semester are often upstaged by new products that involve new time-consuming “re-learning” needs.

On the other hand, technology makes it easier for instructors to communicate with students individually, even between classes and after the course is over. It also gives access to more course material, more media, more simulations, and more powerful indexing and search protocols. This article will review common tools and technologies used in distance education and demonstrate why they can facilitate learning and expand the educational opportunities for both distance and traditional students.

background

For many years, technologies have been used to facilitate learning. In the early 1980s a group of researchers at the New Jersey Institute of Technology (NJIT) realized the enormous potential of technology to enhance learning when they used a computer-mediated system to facilitate a regular face-to-face class. The system was introduced to students in a number of Computer Science and Information Systems courses. Due to the amount of material covered in lectures, there was not much time for dialogue and only a few students participated when there was a class discussion. The instructors introduced asynchronous group communication technologies to communicate discussion questions and assigned grade-point credits for student participation. One-hundred percent of the students participated in these discussions outside of regular classroom hours. The extent and depth of the discussions changed the nature of the classes. Most important, because students had the time to reflect on the ongoing discussion before participating, their contributions were comprehensive, with more well-thought-out comments. Also very significant was the equal participation by students for whom English was a second language. They could reread the online discussion as many times as needed before replying. The computer-based activity monitoring and transcripts, electronic recordings of the discussions, showed that foreign students spent two to three times more in a reading mode and reread many discussions far more often than the American students.

In addition, professors now had the ability to monitor activities and review the electronic transcripts of student involvement, which gives the instructor insights into how students are learning. By reviewing the transcripts of the online discussions, it became obvious what and how students are learning. For courses with a high pragmatic content, such as upper-level and graduate courses in topics like the design and management of computer applications, students are required to utilize problem-solving approaches to evaluate the trade-offs between conflicting objectives. In a traditional classroom environment, especially in large classes, it is very difficult to detect whether students are accurately incorporating the problem-solving mental models that the instructor is attempting to convey. When instructors review the transcripts of class discussions, they are given insights into the approaches students are taking to master the material. Unfortunately, in the early 1980s few wanted to hear about a revolution in normal classroom teaching or were willing to expend the effort to dramatically improve classroom education. It was only the rise of distance education that generated interest in learning about the educational potential of the technology.

Starr Roxanne Hiltz (1994) performed quasi-experimental studies that compared a population of NJIT students (only familiar with face-to-face classroom education) to a population of students taking the same courses in pure face-to-face sections with pure distance sections using only Computer-Mediated Communication (CMC) technology. The students in the matched sections had the same material, the same assignments, the same exams, and the same instructor. No significant difference was found in the amount of learning or the rate of student satisfaction. This finding is much more significant than a determination based on a study that included a population of distance learners already familiar with traditional correspondence classes.

Two critical underlying variables driving the success of this approach were identified by Hiltz (1994). First, the role the instructor needed to take was different from the traditional classroom role. The instructor acted more as an active and dedicated facilitator than a traditional teacher and a consulting expert on the content of the course. Second, collaborative learning and student teamwork were the educational methodology that was shown in later studies to be a key factor in making distance courses as good as or better than face-to-face courses (Hiltz & Wellman, 1997). These results show that distance courses can be as effective as face-to-face courses when using any of the traditional measures, such as exams and grades.

THE STATE OF TECHNOLOGY

Creative, interactive software programs accompanied by background tutoring can effectively teach students to master the skills currently taught in many undergraduate courses. When these courses are automated, the costs incurred are far below typical college tuition. In the future, colleges and universities will not be able to continue to charge current tuition costs for introductory courses that are largely skill oriented. For example, there are many stand-alone and Web-based software programs that offer introductory programming courses, as well as skills in many other areas. These courses are comparable to college courses, and some are even based upon a textbook used on some college campuses. They are available for a few hundred dollars. The major difference is that they do not carry college credits.

The technology allows senior professors or department chairs to effectively evaluate and mentor all instructors of particular courses, whether they are teaching traditional classroom courses or distance courses. The ability to review whole class discussions after the class is over gives senior faculty the ability to evaluate distance instructors hired to teach previously developed courses, as well as to review on-site instructors and junior faculty. Thus, they can improve and extend their mentorship and apprenticing relationships.

Today’s technology for distance education allows faculty members to live anywhere they want. Unique benefits will be available to outstanding teaching faculty. For example, one of the best full-time instructors for NJIT, which is located in beautiful downtown Newark, is a mother with two small children who never has to be on campus. She is teaching other instructors how to teach remotely. Similarly, a University of Colorado accounting professor, on sabbatical in Thailand, was able to teach a course in the Distance M.B.A. program.

There have been a few master’s programs where some or all of the instructors are located anywhere in the world. It is technically feasible for those wanting to escape winter cold to teach in places that we could previously only dream about, such as Hawaii. The technology makes it feasible, but various administrative policies, unions, insurance companies, benefit programs, and so forth, have not yet caught up to the technology. There is increasing emphasis by accrediting agencies on treating remote instructors the same as on-campus faculty members are treated. This is likely to bringing about a greater degree of equality between instructors and tenured track faculty. The outcome is uncertain, but it may mean that the costs for remote and traditional classes will equalize so that the profit margin in online classes will not be quite so high.

specific functions of technology that facilitates learning

Asynchronous Discussions

In the online environment, students can take as much time as they need to reflect on a discussion and polish their comments. This improves the quality of the discussion and changes the psychology and the sociology of communications. Students can address topics in a sequence they choose rather than in a predefined order. This leads to the development of different problem-solving strategies among the individual members of the class. Sometimes courses include synchronous conferences, videoconferencing, and/or video presentations to supplement asynchronous discussions.

Instructor control of online conference and Roles

With online course conferences (many per course), instructors control the membership of each, assign roles, and enable other instructors to monitor conferences for joint-teaching exercises involving more than one course. Groups within courses are able to set up private online conferences for team and collaborative work group assignments. Joint editing of items facilitates team work.

Question and Answer communication Protocol

Instructors are able to ask questions during discussions. They can control who views the answer and prevent other students from seeing the answer of the others or engaging in the resulting discussion until they have entered their own answers. In studies of Group Decision Support Systems, it has been shown that asynchronous groups in an online Delphi mode generate many more ideas than unstructured discussions or face-to-face groups of similar size (Cho, Turoff, & Hiltz, 2003, Turoff, Hiltz, Li, Wang, Cho, & Yao 2004). This area has proven to be a valuable tool in forcing equal participation. Use of question-and-answer communication protocol can be used to motivate each student to independently think through his or her responses without being influenced by the other students.

Anonymity and Pen Name Signatures

When students with work experience are part of a discussion, they can use their real life experiences to illustrate the concepts the professor is presenting. Such comments from fellow students, rather than the professor, often make the instructor’s message more meaningful to the students. A student confirming the theory presented by a faculty member through real-life examples is more effective in making a point than “dry” data from an instructional article. Furthermore, students can talk about disasters in their companies with respect to decisions in any area and provide detail, including costs, when they are not identified and the anonymity of the company for which they work is preserved. Also, the use of pen names allow individuals to develop alternative personas without divulging their real identities and is extremely useful in courses that wish to employ role playing as a collaborative learning method.

Membership Status Lists

The monitoring of activities, such as students’ reading and responding to communications, allows the professor to know what each individual has read and how up to date they are in the discussion. This allows the instructor to detect when a student is falling behind. Professors can use tools to determine which students are not participating actively. For example, a “Rule-Agent Module” reports whether a student has created postings corresponding to professor defined “rules” like an introductory posting was made by a certain date or “more advanced rule interaction could be a participant posting a question in a Web conference, then answering a different question, and finally responding to participants that answered the original question.” (Saltz, Hiltz, Passerini, & Turoff, 2007 p. 36). Rule agents inform the professor about who has and hasn’t fulfilled the rule requirements. A second tool called the “Community View Module” allows the professor to view a class overview of participation and a student details module allows the professor to view statistics and graphs on student participation (Saltz et. al. 2007) In distance learning courses, the Integrated Participation Evaluation Tool (iPET), a Web-based application combining social-network analysis and visualization, incorporates tools such as the these and was found to increase both student participation and motivation without increasing facilitator workload (Saltz et. al 2007).

These tools also allow student collaborative teams to make sure that everyone in the team is up to date. Furthermore, students can easily compare their frequency of contributions relative to other students in the course.

Voting

Instant access to group and individual opinions on resolutions and issues are enabled by voting capabilities. This is useful for promoting discussion, and the voting process is continuous so that changes of views can be tracked by everyone. Voting is not used to make decisions; rather, its function is to explore and discover what are the current agreements and disagreements or uncertainties (polarized vs. flat voting distributions) so that the class can focus the continuing discussion on the latter. Students may change their votes at anytime during the discussion.

Special Purpose Scaling Methods

These useful methods show true group agreements and minimize ambiguity. Currently there are systems that allows each student to contribute a statement at the end of the course describing what he or she thinks is the most important thing learned in the course. Then, after all such statements are compiled, everyone in the class votes by rank ordering all the items on the list. The results are reported using Thurstone’s scaling, which translates the rank order by all the individuals into a single group interval scale. In this interval scale, if 50% prefer A to B and 50% prefer B to A, the two items will be at the same point on the scale. It has been surprising what some of the results have been in some courses. For example, in a Management of Information Systems course, the concept of “runaway” software projects was felt to be twice as important as any other topic. The professor was quite surprised by this result until he began to realize that the students were using this concept of a mental model in which to integrate many of the other things they had learned.

Information overload

This occurs when enthusiastic discussions by students that are meant to augment the quality of the learning process augment only the quantity of the number of comments, leading instead to the problem of “information overload.” Currently this phenomenon limits the size of the group that can be in a single CMC class. Online discussions allow individuals to enter comments whenever it is convenient for them, without waiting for someone else to finish the point he or she is trying to make. This makes it physically possible and also very likely that a great deal more discussion will take place and much more information will be exchanged among the group than if only one person could speak at a time, as in the face-to-face classroom environment. Anything that reduces the temptation of some students to “contribute” comments or messages that have nothing to do with the meaningful discussions underway will increase the productivity of the discussion without information overload setting in.Among such functional tools, computer software can provide:

• Class gradebooks: This eliminates a tremendous amount of electronic mail traffic that would become very difficult for an individual instructor to manage with a large class.

• Selection lists: The instructor can set up lists of unique choices so that each student may choose only one item and others can see who has chosen what. This is very efficient for conveying individualized assignments and reduces a large portion of communications.

• Factor lists: Members of a class or group can add ideas, dimensions, goals, tasks, factors, criteria, and other items to a single, shared list that may then be discussed and modified based upon that discussion and later voted upon.

• Notifications: Short alerts notify individuals when things occur that they need to know about. For instance, students can be notified that a new set of grades or vote distribution has been posted, eliminating the need for individuals to check for these postings. People can attach notifications to conference comments from a select list that provides alternatives like: I agree, I disagree, I applaud, Boo! Such appendages reduce significantly the need to provide paralinguistic cues of reinforcement as additional separate comments.

• Calendars, agendas or schedules: Students have access to a space to track the individual and collaborative assignments and their due dates. These are listed in an organized manner that links detailed explanations for each assignment, as well as questions and answers related to the assignments.

The authors have seen these technologies facilitate learning beyond what can be assessed using traditional measures. Some of the more subtle intangible benefits of technology that we have observed are:

• Due to social pressures, students tend to be more concerned with how other students view their work quality than how the professor views it. They are significantly more motivated to participate in a meaningful way when their fellow students can view their contributions.

• When equality of communications is encouraged, students cannot get away with being passive or lazy. The transcript or electronic recording of the discussions shows who is and is not participating. It is readily evident to both the instructor and other students that someone is being lazy. (In fact, students seem to be more concerned with what the other students will think of their performance than what the professor will think.)

• The scope of what the outstanding students learn becomes even more noticeable.

• The performance of students at the lower end of the distribution is improved. The communications systems permit them to catch up, because they are able to obtain a better understanding of the material with which they are most uncomfortable or have the least background knowledge. • The instructor can become more aware of his/her successes or failures with individual students because of the reflective nature of the student contributions to the discussion.

While these dimensions and concepts need confirmation through long-term longitudinal studies of student performances, the marketplace is also providing confirmation of the beliefs held by many experienced in teaching these classes. We are seeing that collaboratively oriented programs offer a solution to the problems that are inherent in traditional correspondence courses. Students benefit from the ability to electronically store lectures alone or in chunks integrated into other material on the Web. Electronic storage of lectures gives all students the power to choose freely whether they want to attend a face-to-face class or take the same course remotely. Traditional face-to-face students can later hear a lecture missed due to illness or travel. Students with English as a second language can listen to a lecture multiple times. Face-to-face students who have to travel or fall sick during the course can use the same tapes to catch up and/or review material prior to exams.

In our view, a student in a face-to-face class that is not augmented by a collaborative learning approach and by asynchronous group communications technology is not getting as good an education as the distance student who has those benefits. It is the face-to-face student who may be suffering from the segregation of the college system into separate face-to-face and distance courses. These observations about the past and the present lead to some speculations about the future.

The technology available today includes at least 250 versions of group communication software. However, many of them may not survive the decade. There are a growing number of software packages for course management. The online learning product landscape is changing at a rapid pace as companies are acquiring their competitors to expand functionality. A recent article gives an excellent summary of the popular platforms and the evolving nature of eLearning (Gray, 2002).

There are only a few of these products that have wide usage, and they are beginning to raise their prices to capitalize on their popularity. Most of these packages charge a fee per user, which is not the desirable fee structure for the customer. Many of the older conferences systems charge on a per-server basis, and it does not matter how many students one has. It is far cheaper to spend more on the hardware and a get a more powerful server. Also, the course management systems do not provide many of the useful software features one would like to have for group communications. Given the way prices are going, it might be better to pay some of the undergraduate students to educate some of the faculty on how to create their own Web sites and have their own pages for their courses that they update and maintain directly. This also has desirable long-term consequences in raising the ability of the faculty in this area. Once you have committed all your content to one vendor’s system, you are a captured customer and will have to pay whatever they want to charge. Right now, software development is undergoing rapid evolution, and no customer should put him- or herself in the box of only being able to use one vendor. If it is clear that you are using a number of vendors, you may even be able to get some breaks on pricing and will certainly get the top level of service when each of your vendors knows there is an alternative service readily available to you. In the coming decade, one can expect major upgrades for these software systems every few years, and the best one today may not be the best one tomorrow.

course development and delivery challenges

Unfortunately, many faculty members do not know how to use the technology to design a successful distance course. Historical records show, when transferring an application to computers, it is a mistake to just copy the way it used to be done onto the computer. Utilizing the methodology of collaborative learning is the key to designing courses using group communications technology. Simple systems that attempt to impose a discussion thread on top of what is electronic mail technology allow the student or the teacher only to view one comment at a time. This approach does not allow an individual to grasp the totality of any complex discussion. Only by placing the complete discussion thread in a single scrolling page can a person review and understand a long discussion. One can browse the discussion and cognitively comprehend it without having to perform extra operations and lose one’s cognitive focus. Users of such simple systems cannot generate a large complex discussion and have no way of realizing that complex discussion is even possible. When online discussions are successful, they can easily go from enthusiastic wonderful discussions to information overload. Current technology must evolve to fully support collaborative learning.

future trends

To facilitate collaborative learning, critical development directions for the future should include:

• Tailorability of communication structures by instructor;

• Tailorability of communication protocols by instructor;

• Anonymity and pen name provisions;

• Delphi method tools and the availability of scaling and social judgment (voting methods);

• Tools for collaborative model building;

• Powerful information retrieval capabilities;

• Tailorability by instructor of application-oriented icons and graphical components; and

• Tools for the analysis of alternative diagrams.

Instructors also need to allow students to extend the discourse structure and to vote on the significance of incidents of relationships among factors in the problem domain by using Group Decision Support processes. These systems should allow students to not only develop their own conceptual maps for understanding a problem, but also to detect disagreements about elements of the conceptual map and the meanings of terms. This is valuable preparation for problem solving in their professional lives, a process that requires removing inherent ambiguities and individual meanings in the language used to communicate about a problem with others from diverse backgrounds. Routines should be included that are based upon both scaling and social judgment theories that improve the ability of larger groups to quickly reach mutual understanding. Currently, few tools exist in current systems that support the use of collaborative model building, gaming, and Delphi exercises. The current generation of software does not often include the functions of anonymity and pen names. Course instructors need to have complete control over course communication structures and processes and should be able to use their recently acquired knowledge for future offerings of the course. Currently, systems lack the needed integration of functions to easily evolve the changes in both the relationships and the content in a given field. A long-term advantage of teaching in the collaborative electronic environment is that the students create useful material for future offerings and can aid the instructor in monitoring the new professional literature. Future technology will allow faculty members to organize their material across a whole set of courses into a collaborative knowledge base available to the faculty teaching those courses. This would allow students and faculty to create trails for different objectives and weave the material in that knowledge base to suit a group of students or a set of learning objectives.

Individual learning teams would be able to progress through a degree program’s knowledge base at the rate best for them, rather than being held to the same timeframe for all learning teams or faculty teams. Faculty, individuals, or teams would take responsibility for a specific domain with in the web of knowledge representing a degree program.

conclusion

Collaborative technologies are changing the concept of what constitutes a course. Program material could be an integrated knowledge web based largely on semantic hypertext structures. Over time, the domain experts, the faculty—would continue to develop and evolve their parts of the web and wait for learning groups, composed of any mix of distance and regular students sharing the same learning objectives and needs.

Current vendor systems focus on the mass market and concentrate on tools to standardize and present course content. Group communication tools are usually just disguised message servers that offer only a discussion-thread capability and little more—certainly not the complex capabilities discussed above. Vendors have not yet recognized the primary importance of group communications and how faculty members can guide and facilitate the process and be available for consultation as needed. Based upon the conceptual knowledge maps they design, faculty members should be encouraged to develop content structures that are characteristic of their subject matter. In the end, faculty should have the ability to insert group communication activities anywhere in their professional knowledge base (e.g., question/answers, discussion threads, lists, voting, etc.).

key terms

Asynchronous Group Communication Technologies: Technology that allows participants to send and respond to messages without being online simultaneously.

Distance Education: Learning situations in which the students and instructor are located in different localities at least for a portion of the class.

Distributed Learning: Learning situations in which the students and instructor are located in different localities; a bit broader than distance education, as it can be used to refer to both education and training.

E-Learning: The use of technology to assist in the educational process. It is often used to refer to learning situations (both education and training) in which the students and instructor are located in different localities. However, the instructor and teacher can be in close proximity. .

E-Learning Technologies: The technologies used for e-learning.

Pen name signatures: Names participants choose for online participation that may or may not allow other participants to identify them.

Synchronous Group Communication Technologies: Technologies that allow real-time, interactive communications and require participants to be online simultaneously.

Next post:

Previous post: