Zingiber officinale Roscoe (Zingiberaceae) Ginger (Medicine)

Zingiber officinale Roscoe (Zingiberaceae) Ginger

Synonym —

Amomum zingiber L.

Medicinal Uses (Ginger) —

Almost as important medicinally as it is culinarily. Ginger, as our maps indicate, originated on the Indian subcontinent. Newmark and Schulick (2000) quote an Indian proverb that every good quality is contained in ginger. Confucius always had ginger with his meals. The surgeon general for Claudius and Nero used ginger for stomach problems. Mills and Bone (1999) cite in vivo, in vitro, and some clinical evidences re ginger’s antiallergic, antiemetic, anti-hepatotoxic, antiinflammatory, antinauseant, antioxidant, antiparasitic, antiplatelet, antipyretic, antiseptic, antitussive, cardiovascular, digestive, and hypoglycemic activities (MAB). Reportedly carminative, aromatic, stimulant, stomachic, and tonic. Chinese have dozens of uses for the ginger. The bruised leaves are used as a digestive stimulant and for bruise. Sprouts are used for diarrhea, dysentery, marasmus, and worms. Chinese use the root for alopecia, bleeding, cancer, cholera, colds, congestion, diarrhea, dropsy, dysmenorrhea, nausea, rheumatism, snakebite, stomachache, and toothache. Chinese consider the root sialagogue when chewed, sternutatory when inhaled. It is also considered antidotal to aroid and mushroom poisonings. Cotton balls soaked in ginger juice are used in China for first- and second-degree burns; reported clinically successful in alleviating pain, blisters, and inflammation. In TCM, fresh ginger is “sheng jiang,” an herb for wind chills; dry ginger is “gan jiang” more to warm the interior (Libster, 2002). Ginger and garlic are mixed with honey in one Indian cough and asthma remedy. Juice administered in Malay Peninsula against colic. Externally, the rhizome is an efficient rubefacient and counterirritant. The bark poultice, like the leaf cataplasm, is used for felons and inflamed tumors. The rhizome also shows up in folk remedies for cancer. Fresh root chewed and sucked to relieve thirst. Leaves pounded and poulticed warm onto bruises. Weed (2002) recommends ginger tea with honey as a warming drink for upset stomach. Fresh root, grated and steeped in boiling water, or a tablespoon of powdered ginger in a cup of hot water can be a pleasure (Weed, 2002). Ginger tea can even calm the heart. It may, however, increase sweating and flooding. Ginger will warm and help relieve constipation (which may contribute to urge incontinence). Ginger baths, soaks, and compresses can soothe sore and aching joints; hot ginger compresses for fibromyalgia (Weed, 2002). Weed (2002) says, “Ginger root tea warms and nourishes the entire pelvis. Try a cup/250 ml a day, sweetened with honey, for several weeks. Regular menses may be re-established, or the spotting may temporarily increase, then stop.” At the same time, she warns that hot flashes can be triggered by black pepper, cayenne, and ginger.
Ginger is sometimes chewed after kola nut to enhance the latter, as aphrodisiac. Or in Latin America, roots macerated in aguadiente, as a male aphrodisiac, and, like some steroids, used for arthritis and rheumatism. Qureshi et al. (1989) concluded that ginger extracts significantly increase sperm motility and quantity. Ginger shares several phytochemicals with cardamom, regarded by some Arabs as aphrodisiac. Thus, there may be something behind the Root Booster formula, ginseng, ginger, sassafras, and sarsaparilla (1985). Slave-master Portuguese colonialists apparently introduced ginger into West Africa, hoping to increase the slaves’ fertility and fecundity. In Tibet, ginger is believed to stimulate the vital energies of the debilitated and weak. Chinese believe it balances hormonal flow (Schulick, 1994). Ginger certainly can be made pleasant to the taste. Schulick (1994) even recalls a fourteenth century sex manual, entitled The Perfumed Garden, which stated that a man who prepared himself for love with ginger and honey would give such pleasure to the woman that she would wish the act to continue forever. Adding a little cardamom, chile, and ginger to my vegetarian soups makes them warmer, if not more aphrodisiac. The ginger is said to piquantly pique the genitals of those who consume it.
In the U.S. ginger is best known for sea sickness and morning sickness. Since there is no pharmaceutical approved for morning sickness, my friend, Dr. Don Brown, recommends 250 mg of ginger root four times per day, saying it appears to be effective for reducing nausea and the incidence of vomiting. Results could take up to 48 hr. No adverse effects were noted on pregnancy outcome (Brown, 2001). EV.EXT 33, a patented ginger extract, was examined in Wistar SPF rats by oral gavage at 100, 333, and 1000 mg/kg, to pregnant female rats from days 6-15 of gestation. EV.EXT 33 was well tolerated. No deaths or treatment-related adverse effects were observed. Weight gain and food consumption were similar in all groups during gestation. Reproductive performance was not affected by treatment with EV.EXT 33. No embryotoxic or teratogenic effects were observed. EV.EXT 33, when administered to pregnant rats during the period of organogenesis, caused neither maternal nor developmental toxicity at daily doses of up to 1000 mg/kg body weight (X11137381). Vutyavanich et al. (2001), in a randomized, double-masked, placebo-controlled trial, of 32 women (taking 250 mg capsules, 4x/day), concluded that ginger is effective at relieving severity of nausea and vomiting in pregnancy. Dr. Diamond, M.D. (2001) does not contraindicate ginger in pregnancy, and neither do I.
And recently, there is evidence to suggest that powdered ginger is more effective than Dra-mamine for motion sickness. Double-blind crossover studies showed that 1 g/day/4 days powdered ginger diminished or eliminated symptoms of hyperemesis gravidarum. I concluded that a liter of ginger ale, if it contained the 0.525% ginger permitted in cookies, would contain five times the dose required to prevent motion sickness better than Dramamine. Two hundred grams of ginger snaps containing that 5250 ppm ginger would presumably be equally effective. Again, illustrating the controversy in the food farmacy literature. Yamahara et al. (1992) concluded that ginger extracts (75 mg/kg), 6-shogoal (2.5 mg/kg), and 6-, 8- or 10-gingerol (5 mg/kg) enhanced gastrointestinal motility of a charcoal meal. The effects were similar to or slightly weaker than those of metoclo-pramide and donperidone. Synergies could be working here, too. Ginger root significantly reduced the incidence of postoperative emetic sequelae compared to placebo, having the “same effect as metoclopramide.” Still, there is controversy over whether any antiemetic should be administered prophylactically, even though the overall incidence of the nausea and vomiting is ca. 30%. Additionally, ginger has anticathartic activity. [6]-shogoal, [6]-dehydrogingerdione, [8]- and [10]-gin-gerol were found to have an anticathartic action. [6]-Shogaol was more potent than [6]-dehydrog-ingerdione, [8]- and [10]-gingerol (X2074539).
OB-200G, a polyherbal preparation containing aqueous extracts of Garcinia cambogia, Gym-nema sylvestre, Piper longum, Zingiber officinale, and resin from Commiphora mukul, like each component herb, has thermogenic properties. OB-200G exerts antiobesity activities in animal models of obesity. New studies suggest the role of serotonin in mediation of satiety by OB-200G; hence its antiobesity effect (Kaur and Kulkarni, 2001). Eldershaw et al. (1992) showed that some gingerols and shogaols are thermogenic.
According to Sambaiah and Srinivasan (1989), ginger stimulated liver microsomal cytochrome p450 dependent aryl hydroxylase. Investigating antioxidant activity, Ahmed et al. (2000) found that ginger significantly lowered lipid peroxidation by maintaining the activities of the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase in rats. The authors concluded that ginger is as effective as ascorbic acid as an antioxidant.
Newmark and Schulick (2000) comment that ginger is the opposite of Celebrex. Celebrex has one molecule, designed to do one thing. Ginger has close to 500 identified constituents, and many more than that still unidentified (JAD). Ginger has several constituents that inhibit COX-2 and that inhibit the 5-lipoxygenase metabolism of arachidonic acid, thus depriving prostate cancer cells of their fuel for growth. Ginger has at least four prostaglandin-inhibitors that are stronger than indomethacin, the latter being structurally to melatonin. Seventeen pungent oleoresin principals of ginger exhibited a concentration and structure dependent inhibition of COX-2 (IC50 = 1-25 \\M). [8]-paradol and [8]-shogaol and two synthetic analogues, 3-hydroxy-1-(4-hydroxy-3-methoxyphe-nyl)decane and 5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)dodecane, showed strongest inhibitory effects on COX-2. Ginger metabolites, [6]- and [8]-series of gingerol, shogaol, and paradol strongly inhibit COX-2 in disrupted rat basophilic leukemia-1 cells. [6]-gingerol reported to reduce phorbol ester induced inflammation in mice when applied topically. Such potent COX-2 inhibition supports the use of ginger as an inflammatory, perhaps competitive with the synthetic COX-2-Inhibitors (Tjendraputra et al., 2001).
And ginger is a noteworthy source of natural melatonin, a potent antioxidant — more potent than glutathione in scavenging the hydroxyl radical and more potent than vitamin E in scavenging the peroxyl radical. It stimulates the main antioxidant enzyme of the brain, glutathione peroxidase. Melatonin is readily diffused into all tissues of the body, including intracellular membranes, due to its lipophilic structure. It protects DNA against free radical damage (Boik, 1995). Melatonin also inhibited human M-6 melanoma cells in vitro. The mechanism by which melatonin affects melanoma cells is uncertain; it may be due to an antiestrogen mechanism. Studies have shown that extremely low-frequency electromagnetic fields, like those in household electric equipment, block the ability of melatonin to inhibit the proliferation of breast cancer cells in vitro (Boik, 1995). Melatonin may inhibit cancer by augmenting interleukin-2′s anticancer effects. In 90 patients with advanced solid neoplasms, low dose IL-2 (3 million IU) and 40 mg/day melatonin significantly decreased the proliferation of neoplastic cells as compared to IL-2 alone (Boik, 1995). More recently, Boik (2001) notes that melatonin inhibits proliferation of breast cancer and other cell lines in vitro at low concentrations (0.1-1 nM; higher and lower levels were inefficacious) (41 in vitro studies and 13 animal studies). Boik suggests a tentative anticancer dose of 3-20 mg/day. Because the target dose is achievable (but not with food farmacy, JAD), synergistic interactions may not be required for melatonin to produce an anticancer effect in humans. Nevertheless, melatonin may greatly benefit from synergism, and it makes sense to continue testing it in combination with other compounds (Boik, 2001).
Though ginger may be hot to the taste, it exerts great antiulcer potential — methinks even better in combination with licorice. Schulick (1994) notes that ginger can relieve inflammation while simultaneously protecting the digestive system from ulcers. When lab animals are exposed to severe stress, ginger extract, even at high doses, can inhibit ulcers by as much as 97.5%. For the 25 million American males and 12 million females suffering duodenal and/or gastric ulcers, daily ginger is an attractive alternative to cimetidine, famotidine, and ranitidine, accounting for sales of $2.8 billion a year. U.S. News & World Report (as early as 21 Feb. 1994) noted that the H2-receptor antagonists are among those with the most side effects and the highest prices. Upwards of 90% of users suffer high recurrence rates. Cost of consumption over 15 years may exceed $10,000 (Schulick, 1994). Furanogermenone also prevents gastric ulcers in rats (oral doses of 500 mg/kg). Ginger (water decoction), long pepper (water decoction), and Ferula species (colloidal solution) showed antiulcer in rats at oral doses of 50 mg/kg, 60 min prior to experiment, significant protection against gastric ulcers induced by 2-hr cold restraint stress, aspirin (200 mg/kg, 4 hr) and 4-hr pylorus ligation. The antiulcerogenic effect seemed due to augmentation of mucin secretion and decreased cell shedding rather than offensive acid and pepsin secretion which, however, were also found to be increased. Yamahara et al. (1992) note that beta-sesquiphellandrene, beta-bisab-olene, ar-curcumene, and 6-shogaol also have antiulcer activities. In fact, ginger can contain more than a dozen each of antiinflammatory, antiulcer, and sedative compounds (USDA database), making the ginger, like the licorice, very promising with ulcers.
Hikino et al. (1985) reported antihepatotoxic actions of gingerols, shogaols, and diarylhep-tanoids. The [7]- and [8]-gingerols and shogaols exhibited greater antihepatotoxic activities. Turmeric has more notoriety as an antihepatotoxic, but I can see reason for mixing and matching our gingers and turmerics and other members of this tropical spice family.
Goto et al. (1990) showed that 6-shogoal and 6-gingerol synergistically killed larvae, perhaps again vindicating the folk usage of ginger as an antidote for seafood poisoning. Adewunmi et al. demonstrated that gingerol and shogoal have potent molluscicidal activity against Biophalaria glabrata. At 5 ppm, gingerol completely nullified the infectivity of Schistosoma mansoni miracidia and cercariae in B. glabrata and mice respectively, suggesting that the molluscicide is capable of interrupting schistosome transmission at concentrations lower than the molluscicidal concentration. According to Murakami (1994), 6-gingesulfonic acid has more potent antibiotic activity than 6-gingerol and 6-shogaol. Schulick (1994) notes that ginger is active against gram(-) and gram(+) bacteria, naming Escherichia coli, Proteus vulharis, Salmonella typhimurium, Staphylococcus aureus, and Streptococcus viridans (but no studies on helicobacter), while still serving as a probiotic, stimulating the growth of potentially useful Lactobacillus. In this latter regard, ginger was better than cinnamon, garlic, and pepper. Proteolytic enzymes like zingibain can enhance synthetic antibiotic bactericides as much as 50% (Schulick, 1994). When the CDC and FDA constantly tell us that herbs can’t help against germ warfare, they forget their own words, that people who have compromised immune systems are more likely to be infected by germs. Ginger can kill gram(+) bacteria, if not anthrax, and boost the immune system at the same time. “Ginger not only maintains immune system functioning, but studies in Montreal and in Tokyo in 1955 and 1979 concluded that the spice may actually enhance immunity. Ginger apparently induced neutrophils which can stimulate host resistance to various diseases” (Schulick, 1994).
Some ginger compounds exhibited moderate growth regulatory and antifeedant activity against Spilosoma obliqua and significant antifungal activity against Rhizoctonia solani. [6]-dehydroshog-aol exhibited maximum growth regulatory activity (EC50 = 3.55 mg/ml); dehydrozingerone imparted maximum antifungal activity (EC50 = 86.5 mg/l) (Agarwal et al. 2001). The antifungal diarylheptenones, gingerenones A, B, C and isogingerenone B, might possibly be synergistic, in
ginger and man. Gingerenone A showed strong antifungal activity to Pyricularia oryzae, and moderate anticoccidium activity against Eimeria tenella.
In rats, oral doses of 50-100 mg/kg ethanolic extract had antiinflammatory activity comparable to aspirin, but the analgesic activity was only 710th that of aspirin. Shogoal and gingerol are analgesic components. In one clinical trial, extract of ginger and greater galangal extract significantly (but modestly) reduced symptoms of oestoarthritis of the knee. There was a good safety profile, with some mild GI adverse events in the herbal group compared to controls (Altman and Marcussen, 2001). The extract was active against Gram(-) and Gram(+) bacteria.
Reportedly, 500-600 mg powdered ginger root can prevent migraine, based on a single case history. And merely chewing without swallowing, 1 g ginger can raise systolic pressure 11 mm Hg, diastolic, 14 (MAB). Paralleling similar reports from pepper; holding 100 mg pepper in the mouth transient increases systolic pressure 13 mm Hg c, diastolic 18 (Lin, 1994).
Under the able direction of Lionel Robineau, M.D., TRAMIL suggests that shogoal is intensively antitussive, compared to dihydrocodeine. All but “prescribing” ginger for colds, cough, flu, stomachache, and vomiting, TRAMIL classifies ginger in their “REC” category. Here is how TRAMIL explains their REC category:
“We recommend certain usage of plants (or parts) very frequently used in cases of well defined ailments by the population…and for which the same indications for use are given in…the Caribbean, or in other tropical regions, and which have been the object of validative phytochemical pharmacological and/or toxicological work.
Category C also includes plants that are well known as innocuous, whose biological activity for the cited indication is still to be proven, but that can be recommended as a placebo.
In this last category, there are also new indications of ‘TRAMIL’ plants, whose use the participants in the TRAMIL 3 workshop had recommended and encouraged in view of the available scientific information for those species.”
I suppose science has marched on since the days of Watt’s “trikatu” for dermatoses, just before a.d. 1900. Now there’s a patented new trick or two. U.S. Patent No. 6,063,381 describes antiinfective agents from black pepper, ginger, and other spices containing the vanillyl and piperidine ring structure. These compounds are useful with mycoses, tissue injuries, and abnormal proliferation of keratin. Various topical applications provide “outstanding results” in athlete’s foot, candida, jock itch, ringworm, and favus. Caveat emptor (Dean, 2000).

Indications (Ginger) —

Adenosis (f; KAB); Aging (f; WHO); Alcoholism (1; MAB); Allergy (1; FAY; FNF; MAB); Alopecia (f; DAA; DAD; FAY; WHO); Alzheimer’s (1; COX; FNF); Anemia (f; DAA); Anorexia (2; JFM; KAB; PHR; WHO); Anxiety (1; MAB); Arthrosis (1; COX; MAB;
SKY); Ascites (f; KAB); Asthma (f; FAY; JFM; MAD); Atherosclerosis (f; SKY); Backache (1;
WHO); Bacteria (1; APA; FNF; MAB; TRA); Bite (f; DAA; KAB); Bleeding (f; DAA); Blister (1; DAD; DAA; FAY); Boil (f; KAB); Borborygmus (f; BGB); Bronchosis (1; AAB; BGB; FAY; FNF); Bruise (f; DAA; DAD); Burn (1; APA; DAD; FAY; MAB); Cancer (1; MAB); Candida (1; TRA); Cardiopathy (1; APA; FAY); Cataract (f; WHO); Catarrh (2; DAD; TRA); Chemotherapy (1; MAB; SKY); Chest Cold (1; AAB); Childbirth (f; AAB); Cholera (f; DAA; DAD); Cold (2; AKT; APA; BGB; FNF; MAD; TRA; WHO); Colic (1; PNC; BGB; SUW; WHO); Congestion (1; DAA; DAD; FNF; RIN); Convulsion (1; PNC); Corneosis (f; DAA); Cough (1; APA; BGB; FAY;
FNF; PNC); Cramp (1; APA; BGB; KOM; MAB; PIP; PNC; TRA; WAM); Dandruff (f; APA);
Depression (1; APA; DAA; MAB; WOI); Diabetes (1; DAA); Diarrhea (2; AAB; BGB; DAA;
TRA; WHO); Dizziness (2; JAD); Dropsy (f; DAA; DAD); Dysmenorrhea (1; AAB; APA; DAA; JFM; MAB); Dyspepsia (2; FAY; FNF; KOM; PIP; MAD; SUW; TRA; WAM); Dyspnea (f; BGB;
PH2); Earache (f; APA); Edema (1; MAB); Elephantiasis (f; KAB); Enterosis (1; APA; FAY; MAD;
PNC); Epigastrosis (f; BGB; MAD); Epistaxis (f; FAY); Escherichia (1; HH3); Fever (2; APA;
CAN; FAY; FNF; MAB; MAD; TRA); Flu (2; APA; BGB; FNF; TRA; VVG; WHO); Fungus (1;
Gastrosis (2; APA; FAY; MAD; PHR; TRA); Headache (1; APA; FAY; KAP; MAB; WAM); Head
Cold (f; JFM; RIN); Hemorrhoid (f; KAB; MAD; WHO); Hepatosis (1; APA; MAD); High Blood Pressure (1; APA; PNC); High Cholesterol (1; MAB; PED; PNC); Hoarseness (f; JFM); Hypere-mesis (2; AKT); Immunodepression (1; FNF; PH2); Impotence (1; APA; MAB); Infection (1; DAD; FNF; MAB; TRA); Infertility (f; MAD); Inflammation (2; FAY; FNF; MAB; TRA; SKY; WAM; WHO); Insomnia (f; WHO); Kawasaki Disease (1; MAB); Low Blood Pressure (1; MAB); Lumbago (1; PNC); Malaria (f; JFM; MAD); Marasmus (f; DAA; DAD); Migraine (1; APA; FAY; MAB;
PH2; SKY; WHO); Morning Sickness (2; FNF; KOM; MAB; PIP; WHO); Motion Sickness (2;
FNF; KOM; MAB; PIP; WHO); Mycosis (1; DAD; HH3; MAB; TRA); Myosis (1; AAB; AKT;
WAM; WHO); Nausea (2; BGB; DAA; FAY; FNF; TRA; WAM; WHO); Nephrosis (f; APA; DAA); Nervousness (1; FNF); Neuralgia (1; COX; FNF); Neurasthenia (f; MAD); Obesity (1; PH2);
Opacity (f; JFM); Ophthalmia (f; JFM); Osteoarthrosis (1; AKT; COX); Pain (1; AKT; FAY; FNF; JBU; PED; PNC; TRA; WAM; WHO); Palpitation (f; FAY); Parasite (1; MAB; TRA); Pharyngosis (1; JFM; PH2; TRA); Postoperative Nausea (2; WHO); Pyrexia (f; PNC); Raynaud’s (f; BGB); Rheumatism (1; FAY; MAB; MAD; PNC; SKY; WHO); Salmonella (1; HH3; TRA); Schistosomiasis (1; DAD; HH3; TRA); Seasickness (2; FNF; WHO); Snakebite (f; DAA; DAD); Sore Throat (1; APA); Splenosis (f; FAY); Staphylococcus (1; HH3; TRA); Stomachache (1; AAB; AKT; DAA; DAD; FNF); Stomatosis (f; MAD); Streptococcus (1; HH3); Stroke (1; APA); Swelling (1; FAY; HH3; MAB; WHO); Thirst (f; DAD); Thrombocytosis (1; MAB); Toothache (f; DAD; MAD; KAP; WHO); Trichomoniasis (1; DAA); Ulcer (1; APA; FAY; FNF; MAB; VVG); Vaginosis (1; DAA); Vertigo (1; MAB); Virus (1; APA; FNF; MAB; TRA; WAM); Vitiligo (f; FAY); Vomiting (3; KOM;
PIP; WHO); Worm (f; DAA; DAD); Yeast (1; TRA).

Ginger for cold/flu:

• Analgesic: 6-gingerol; 6-shogaol; borneol; caffeic-acid; camphor; capsaicin; chlorogenic-acid; eugenol; ferulic-acid; gingerol; myrcene; p-cymene; quercetin; shogaol
• Anesthetic: 1,8-cineole; benzaldehyde; camphor; capsaicin; eugenol; linalool; myrcene
• Antiallergic: 1,8-cineole; 6-gingerol; 6-shogaol; citral; ferulic-acid; gingerol; kaempferol; linalool; quercetin; shogaol; terpinen-4-ol
• Antibacterial: 1,8-cineole; acetic-acid; alpha-pinene; alpha-terpineol; benzaldehyde; beta-ionone; beta-thujone; bornyl-acetate; caffeic-acid; caryophyllene; chlorogenic-acid; citral; citronellal; citronellol; curcumin; delta-cadinene; eugenol; ferulic-acid; geranial; geraniol; kaempferol; limonene; linalool; myrcene; myricetin; neral; nerol; nerolidol; p-coumaric-acid; p-cymene; p-hydroxy-benzoic-acid; patchouli-alcohol; perillaldehyde; quercetin; terpinen-4-ol; vanillic-acid
• Antibronchitic: 1,8-cineole; borneol; curcumin
• Antiflu: alpha-pinene; caffeic-acid; limonene; p-cymene; quercetin
• Antihistaminic: 6-shogaol; 8-gingerol; 8-shogaol; caffeic-acid; chlorogenic-acid; citral; gingerol; kaempferol; linalool; myricetin; quercetin; shogaol
• Antiinflammatory: 10-dehydrogingerdione; 10-gingerdione; 6-dehydrogingerdione; 6-gin-gerdione; alpha-curcumene; alpha-linolenic-acid; alpha-pinene; beta-pinene; borneol; caf-feic-acid; capsaicin; caryophyllene; chlorogenic-acid; curcumin; eugenol; ferulic-acid; gingerol; kaempferol; myricetin; quercetin; salicylates; shogaol; vanillic-acid; zingerone
• Antioxidant: 6-gingerdiol; 6-gingerol; 6-shogaol; caffeic-acid; camphene; capsaicin; chlorogenic-acid; curcumin; delphinidin; eugenol; ferulic-acid; gamma-terpinene; gin-gerol; isoeugenol; kaempferol; melatonin; myrcene; myricetin; p-coumaric-acid; p-hydroxy-benzoic-acid; quercetin; vanillic-acid; vanillin; zingerone
• Antipharyngitic: 1,8-cineole; quercetin
• Antipyretic: 6-gingerol; 6-shogaol; borneol; eugenol; gingerol; salicylates; shogaol
• Antirhinoviral: ar-curcumene; beta-bisabolene; beta-sesquiphellandrene; zingiberene
• Antiseptic: 1,8-cineole; alpha-terpineol; aromadendrene; benzaldehyde; beta-pinene; caf-feic-acid; camphor; capsaicin; chlorogenic-acid; citral; citronellal; citronellol; eugenol; furfural; geraniol; gingerol; hexanol; kaempferol; limonene; linalool; myricetin; nerol; oxalic-acid; paradol; shogaol; terpinen-4-ol
• Antistress: gamma-aminobutyric-acid
• Antitussive: 1,8-cineole; 6-gingerol; 6-shogaol; terpinen-4-ol
• Antiviral: alpha-pinene; ar-curcumene; beta-bisabolene; bornyl-acetate; caffeic-acid; chlorogenic-acid; curcumin; cyanin; ferulic-acid; geranial; kaempferol; limonene; lina-lool; myricetin; p-cymene; quercetin; vanillin
• Bronchorelaxant: citral; linalool
• COX-2-Inhibitor: curcumin; eugenol; kaempferol; melatonin; quercetin; 10-gingerol; 8-paradol; 6-shogaol; xanthorizol
• Cyclooxygenase-Inhibitor: 6-gingerol; capsaicin; curcumin; gingerol; kaempferol; mela-tonin; quercetin; shogaol; zingerone
• Decongestant: camphor
• Expectorant: 1,8-cineole; acetic-acid; alpha-pinene; beta-phellandrene; beta-sesquiphel-landrene; bornyl-acetate; camphene; camphor; citral; geraniol; limonene; linalool
• Immunostimulant: alpha-linolenic-acid; benzaldehyde; caffeic-acid; chlorogenic-acid; curcumin; ferulic-acid; melatonin
• Interferonogenic: chlorogenic-acid
• Phagocytotic: ferulic-acid
Ginger for dyspepsia:
• Analgesic: 6-gingerol; 6-shogaol; borneol; caffeic-acid; camphor; capsaicin; chlorogenic-acid; eugenol; ferulic-acid; gingerol; myrcene; p-cymene; quercetin; shogaol
• Anesthetic: 1,8-cineole; benzaldehyde; camphor; capsaicin; eugenol; linalool; myrcene
• Antiemetic: 6-gingerol; camphor; gingerol; shogaol
• Antigastric: myricetin; quercetin
• Antiinflammatory: 10-dehydrogingerdione; 10-gingerdione; 6-dehydrogingerdione; 6-gin-gerdione; alpha-curcumene; alpha-linolenic-acid; alpha-pinene; beta-pinene; borneol; caf-feic-acid; capsaicin; caryophyllene; chlorogenic-acid; curcumin; eugenol; ferulic-acid; gingerol; kaempferol; myricetin; quercetin; salicylates; shogaol; vanillic-acid; zingerone
• Antioxidant: 6-gingerdiol; 6-gingerol; 6-shogaol; caffeic-acid; camphene; capsaicin; chlorogenic-acid; curcumin; delphinidin; eugenol; ferulic-acid; gamma-terpinene; gin-gerol; isoeugenol; kaempferol; melatonin; myrcene; myricetin; p-coumaric-acid; p-hydroxy-benzoic-acid; quercetin; vanillic-acid; vanillin; zingerone
• Antipeptic: benzaldehyde; beta-eudesmol
• Antistress: gamma-aminobutyric-acid
• Antiulcer: 6-gingerol; 6-gingesulfonic-acid; 6-shogaol; alpha-zingiberene; ar-curcumene; beta-bisabolene; beta-eudesmol; beta-sesquiphellandrene; capsaicin; chlorogenic-acid; curcumin; eugenol; kaempferol; zingiberene; zingiberone
• Antiulcerogenic: caffeic-acid
• Anxiolytic: gamma-aminobutyric-acid
• Carminative: camphor; ethyl-acetate; eugenol; zingiberene
• Digestive: capsaicin
• Gastrostimulant: 6-shogaol; galanolactone; gingerol; shogaol
• Proteolytic: zingibain
• Secretagogue: 1,8-cineole; p-hydroxy-benzoic-acid; zingerone
• Sedative: 1,8-cineole; 6-gingerol; 6-shogaol; alpha-pinene; alpha-terpineol; benzalde-hyde; borneol; bornyl-acetate; caffeic-acid; caryophyllene; citral; citronellal; citronellol; eugenol; farnesol; gamma-aminobutyric-acid; geraniol; geranyl-acetate; gingerol; isoborneol; isoeugenol; limonene; linalool; nerol; p-cymene; perillaldehyde; shogaol
• Sialagogue: capsaicin
• Tranquilizer: alpha-pinene; gamma-aminobutyric-acid

Other Uses (Ginger) —

With its agreeable aroma and pungent taste, it is prepared from whole or partially peeled rhizomes, called “hands.” Ginger is extensively used as condiment, in baked goods, beverages, cakes, candies, chutneys, curries, ginger ale, ginger beer, mincemeat, pastries, pickles, and preserves. Ginger is marketed whole, cracked, ground, powdered, and as a flavoring. It is said to be used as a vegetable substitute for rennet. Young rhizomes, called green ginger, stem ginger, or young ginger, are peeled and eaten raw in salads, pickled, or cooked in syrup and made into sweetmeats. Like garlic, ginger gets milder if cooked, bitter if burned. To make “pink ginger,” the Japanese garnish, take very young ginger roots, scrape off the skin, saturate with lemon juice (which turns it pick), and season with salt (RIN). Pickled ginger, known as “amazu-shoga” or “gari,” is frequently consumed with sushi, etc. Pickled and dyed red, they are known as “hajikami-shoga.” Candied ginger, preserved in honey, sugar, or syrup, is a real treat. In Australia, the young rhizomes are preferred for making crystallized ginger. The juice of the rhizomes is nice in ginger ale, ginger beer, wine, brandy, and herbal teas. Young, spicy shoots are eaten as a potherb or pureed and used in sauces and dips. Young inflorescences are eaten raw in khaao yam. The leaves are used to wrap food for grilling (FAC). Ginger contains a proteolytic enzyme which, like ficin, bromelain, and papain, can be used for tenderizing meats. The proteolytic enzyme is present at levels of 2.26% of the fresh rhizome, such that 50 kg ginger can yield 1 kg of the enzyme; by contrast, it takes 8000 kg papaya (but remember, it’s mostly water) to produce 1 kg papain, papaya’s digestive enzyme. All these proteolytic enzymes, like the hydroxy fruit acids they often accompany, have cosmetic applications as well. The EO, called “oil of ginger,” is used in food flavoring, beverages, and perfumes, especially men’s toilet lotions (DAD, RIN, WOI). And Bown (2001) notes that shogaols, breakdown products of gingerol, produced as ginger dries, are almost twice as hot as gingerols. Hence the dried ginger, with half the water, may have more than twice the pungency. That may well be why the Chinese use the dry ginger for different purposes than the fresh.
Thanks to Fulder (1996) for dredging up some Confucian ginger recipe, something akin to beef jerky: They would beat the beef, removing the skinny parts. Then they laid it in a frame of reeds and sprinkled it with cinnamon, ginger, and salt. It is then eaten once dried. They also prepared deer, elk, and mutton similarly (Fulder, 1996). In What Color is Your Diet, Dr. David Heber (2001), professor of medicine and director of the UCLA Center for Human Nutrition says “Ginger and garlic are contrasting and can be used with cut up broccoli or Brussels sprouts.” Heber notes that steamed vegetables with subtle mild tastes “or mildly unpleasant tastes” may need dressing up, and spices can be used to contrast two flavors. “A low fat diet based on fruits, vegetables, and whole grains offers the best possible diet for achieving optimum health. And the results show that people around the world who eat in this manner, exercise regularly, and avoid tobacco have the least amount of cancer, heart disease, hypertension, diabetes, and osteoporosis” (Heber, 2001).
For more information on activities, dosages, and contraindications, see the CRC Handtopic of Medicinal Herbs, ed. 2,  et al. 2002.

Cultivation (Ginger) —

In southern India, planting begins in May, when rains commence; later in other areas. Beds 2 m long and about 1 m wide are prepared. Small holes 12 cm deep and 7.5 cm apart are dug, and a rhizome planted in each. Holes are filled with dry cow-dung powder. When planting area is completed, beds are covered with green-leafed tree branches. As leaves wither and fall off, they act as a green fertilizer; bare branches are removed and beds weeded.
When shoots are 10-12 cm tall, fresh undried cow-dung and leaf mold are placed on beds. About a month after planting, edges of beds are raised to allow drainage from monsoon rains. Except for an occasional weeding, no further cultivation is required until harvesting in December or January. Plants require 9 months to mature in southern India. In West Indies, ginger is often grown on ridges about 1 m apart, plants are spaced 30-45 cm apart in the row. When planted in beds 45 cm wide, a row of ginger is planted along each edge, with sides of ridge nearly perpendicular. Planting done in March and April. Rhizomes are broken into pieces 2.5-5 cm long, each cutting having at least one bud. Before planting, holes or furrows are partly filled with manure, then cuttings put in, spaced 30—45 cm apart, and covered with 7.5-10 cm of soil. After planting, beds are shaded with branches, then leaf mold is added later. Plantings last several years but begin to decline to uneconomical levels after fifth year. After 3 years, ginger is usually rotated with corn, peas, yams, or lentils, to enrich soil, so that, at end of 5 years of rotation, the area may be planted to ginger again. Although fertilizers do increase yields, they make drying rhizome more difficult. Often cultivated in southern Queensland as an annual. In favorable locations, ratoon crops may be grown, but ratooning is practicable only with ginger grown for late harvesting. If crop is ratooned after early harvest, it shoots before winter, and new growth is destroyed by frost or dies off in near-frost temperatures. Ginger and turmeric are well suited for mixed cultivation. Purchased ginger roots can be planted in your window herb box and harvested much later when the sprouted leaves have gone dormant (DAD, RIN). Crop is ready for harvest when stem turns white, before rhizomes get fibrous and tough. Roots are dug like potatoes. After being dug, well-ripened large rhizomes are spread on mats 2.5-3.5 m above a fireplace and smoked to dry and preserve them. For rhizomes destined for market, fibrous roots are removed, and rhizomes are washed, decorticated, dried, and sometimes bleached. Rhizomes destined for replanting are heaped and covered with leaf mold or manure to keep them from drying out until planting. Rhizomes must be frequently turned and protected from night dew. In Hawaii, ginger is harvested from January to April, when prices are low due to large imports of ginger from other regions. One kg of planted rhizome yields 25-61.5 kg fresh rhizome, the quality depending on culture, soil, and weather conditions. As each rhizome weighs about 450 gm, and each plant produces about 9 such rhizomes, yields of 5 tons or more of green ginger and 0.5 tons or more of dried rhizome/ha are easily possible. By careful cultivation and manuring, yields can be increased (DAD). For more details see  and  (1993) and Purseglove
et al. (1981).

Chemistry (Ginger)

— Patel and Srinivasan (1985) noted that dietary ginger significantly increased lipase, maltase, and sucrase activities. The protein is rich in threonine and proline but contains little or no tryptophan. Asparagine and pipecolic acid have been isolated from aqueous extracts of the rhizomes. Here are a few of the more notable chemicals found in ginger. For a complete listing of the phytochemicals and their activities, see the CRC phytochemical compendium,  and duCel-lier, 1993 (DAD) and the USDA database .
10-Gingerdione — Antiinflammatory (>indomethacin); Antiprostaglandin IC50 = 1.0 \\M.
6-Gingerdione — Antiinflammatory (>indomethacin); Antiprostaglandin IC50 = 1.6 |jM.
Gingerenone-A — Anticoccidioid 10 ppm; Fungicide 10 ppm.
Gingerenone-B — Fungicide.
Gingerenone-C — Fungicide.
Gingerol — Analgesic; Antiaggregant 0.5-20 | M, 10-100 | M; Antiallergic; Anticancer; Anti-emetic; Antihepatotoxic; Antihistaminic; Antiinflammatory; Antioxidant; Antiprostaglandin 0.5-20 | M; Antipyretic; Antischistosomic 5 ppm; Antiseptic; Antithromboxane 0.5-20 | M; Cardiotonic 1-30 | M; Cholagogue; Cyclooxygenase-Inhibitor; Fungicide; Gastrostimulant; Hepatoprotective;
Hypotensive; Inotropic 1-30 |jM; Molluscicide 5 ppm, LD20 = 12.5 ppm; Mutagenic; Nematicide; Positive Inotropic 1-30 ng/ml; Schistosomicide EC100 = 10 ppm; Sedative; Thermogenic.
6-Gingerol — See also Aframomum melegueta.
8-Gingerol — See also Aframomum melegueta.
Zingiberene — See also Curcuma zedoaria.
Zingiberol — See also Curcuma xanthorrhiza.
Zingiberone — Antimutagenic; Antiulcer.
Well, you have toured the spices with me, from Aframomum to Zingiber. Recently I appeared with Nina Simonds on a fundraiser for land public TV. They showed Nina’s video, A Spoonfull of Ginger, between pledge pitches. I told Nina she should get rights to use that famous trumpeter’s version of “A Taste of Honey” and come out with a recipe for Honey Candied Ginger. I’d like to close with some of Nina’s comments recounting how she, like me, had been converted to natural medicine. Her conversion was a yin-yang conversion in China, my conversion, more earthy, was in the rain forests of Panama. Now we both share Hippocrates dictum: let food be your farmacy [Sic! Stet!]
Nina’s nice topic combines the best of both food and food farmacy. Her charming introductory anecdote discussed her problem back in 1972, stomachache, from having consumed too many yin foods proportionate to the yang foods she consumed after arriving in Tapei for a 3.5-year sojourn of China. The cure, eat some yang foods. Among those yang spices, the ginger that cured her stomachache so well that she wrote the topic, her Spoonful of Ginger, with a lot of recipes for curry, a hot yang combination of spices, including ginger’s first cousin, turmeric.
She prefaces her topic with the two quotes which close my topic:
“Let food be your medicine and medicine be your food.”—Hippocrates
“To take medicine only when you are sick is like digging a well when you are thirsty. Is it not already too late?”—The Yellow Emperor’s Classic of Internal Medicine (~4500 B.C.).

Next post:

Previous post: